HIGH-ENERGY OCD AND DIFFRACTION PART I

Francesco Giovanni Celiberto, UAH Madrid

Midsummer School in QCD 2024

24 June – 6 July 2024 Saariselkä, Finland

Hors d'œuvre

LHC & <u>new-gen.</u> colliders:

A new era for particle physics

Hors d'œuvre

LHC & <u>new-gen.</u> colliders:

A new era for particle physics

Fixed-order pQCD: Accurate calculations of parton scatterings

Fixed-order pQCD: Misses logarithmic enhancements

LHC & new-gen. colliders:

A new era for particle physics

Fixed-order pQCD: Accurate calculations of parton scatterings

Restoring convergence: All-order studies High-energy resummation

> Fixed-order pQCD: Misses logarithmic enhancements

LHC & new-gen. colliders:

A new era for particle physics

Fixed-order pQCD: Accurate calculations of parton scatterings

Hors d'œuvre

A basic overview

Table of contents

QCD & resummations - LL & NLL accuracy - Diffractive processes

A basic overview

QCD & resummations - LL & NLL accuracy - Diffractive processes

Jet-jet and hadron-jet correlations

Mueller-Navelet jets - Light-flavored hadrons - NLL instabilities

Table of contents

QCD & resummations - LL & NLL accuracy - Diffractive processes

Jet-jet and hadron-jet correlations

Mueller-Navelet jets - Light-flavored hadrons - NLL instabilities

High-energy QCD from Higgs and heavy flavors

Higgs + jet correlations - Open heavy-flavored hadrons - Quarkonia

Table of contents

Table of contents

QCD & resummations - LL & NLL accuracy - Diffractive processes

Mueller-Navelet jets - Light-flavored hadrons - NLL instabilities

High-energy QCD from Higgs and heavy flavors

Higgs + jet correlations - Open heavy-flavored hadrons - Quarkonia

Proton structure and spin at small-*x*

The BFKL UGD - 3D tomography with (un)polarized gluon TMDs

Table of contents

QCD & resummations - LL & NLL accuracy - Diffractive processes

The QCD sector: Quarks & Gluons

I.1 QCD & resummations

The QCD sector: Quarks & Gluons

I.1 QCD & resummations

Quarks + Gluons = Partons

The QCD sector: Quarks & Gluons

QCD & resummations

Quarks + Gluons = Partons

Current quarks VS Constituent quarks

Observed hadrons are not elementary particles. They are <u>colorless</u>

I.1 QCD & resummations

Observed hadrons are not elementary particles. They are colorless

Observed hadrons are not elementary particles. They are colorless

I.1 QCD & resummations

Strong force increases with distance

Partons not observed alone

Nucleon structure not calculable

Observed hadrons are not elementary particles. They are colorless

I.1 QCD & resummations

Strong force increases with distance

Partons not observed alone

Nucleon structure not calculable

I.1 QCD & resummations

¿What is factorization?

Consequence of decoupling of long-distance dynamics from short-distance one

Exception rather than rule: valid for a few processes, assumed in pheno studies

Different kinds of factorization \rightarrow PDF universality, evolution equations

Factorization in QCD

Vital component of QCD \rightarrow no predictive power in hadronic reactions otherwise

Proof of factorization highly non trivial \rightarrow "as complex as proof of renormalization"

Factorization & QCD observables

Factorization & QCD observables

S What is a resummation ?

I.1 QCD & resummations

Precision QCD ← fixed-order calculations

I.1 QCD & resummations

Precision QCD \leftarrow fixed-order calculations

Large logs (p_T/parton shower, x, energy, jet radius, etc.) \rightarrow spoil pQCD convergence

I.1 QCD & resummations

 $\alpha_s^m \ln^n(Q_i/Q_j)$

Large logs (p_T/parton shower, x, energy, jet radius, etc.) \rightarrow spoil pQCD convergence

Restoring convergence \rightarrow "all-order" resummations

QCD & resummations

 $\alpha_s^m \ln^n(Q_i/Q_j)$

Large logs (p_T/parton shower, x, energy, jet radius, etc.) \rightarrow spoil pQCD convergence

 $\alpha_s^m \ln^n(Q_i/Q_j)$

The semi-hard sector of QCD

High energies reachable at the LHC and at future colliders:

- great opportunity in the search for long-waited signals of New Physics...
- ♦ …faultless chance to test <u>Standard Model</u> in unprecedent kinematic ranges
- only 5% of Universe visible, but most of this described by strong interactions

The semi-hard sector of QCD

High energies reachable at the LHC and at future colliders:

- great opportunity in the search for long-waited signals of New Physics...
- In the second second
- only 5% of Universe visible, but most of this described by strong interactions

Diffractive semi-hard processes

Diffractive processes with a stringent scale hierarchy: $s \gg \{Q^2\} \gg \Lambda_{OCD}^2$

- \diamond {Q} is (a set of) process-specific **hard scale**(s) (*e.g.* photon virtuality, heavy quark mass, jet/hadron transverse momentum, t, etc.)
- \diamond large $Q \Rightarrow \alpha_s(Q) \ll 1 \Rightarrow$ perturbative QCD
- large $s \implies$ large energy single logs
- Convergence of perturbative series is spoiled when $\alpha_s(Q) \log s \sim 1 \Rightarrow$ all-order resummation needed

I.2 LL & NLL accuracy

The high-energy resummation

BFKL resummation

[V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975, 1976, 1977); Y.Y. Balitskii, L.N. Lipatov (1978)]

based on **gluon Reggeization**

leading logarithmic approximation (LL):

next-to-leading logarithmic approximation (NLL):

 $\alpha_s^n(\ln s)^n$

$$(+\cdots) + \cdots$$

 $\alpha_s^{n+1}(\ln s)^n$

The high-energy resummation

BFKL resummation

[V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975, 1976, 1977); Y.Y. Balitskii, L.N. Lipatov (1978)]

based on **gluon Reggeization**

leading logarithmic approximation (LL):

next-to-leading logarithmic approximation (NLL):

 $\alpha_s^n(\ln s)^n$

 $\alpha_s^{n+1}(\ln s)^n$

BFKL how to, ... pause...

$$A_8(s,t) = A^{(0)}(s,t) \, \left(1 + \ln(rac{s}{|t|}) \, \epsilon(t) + rac{1}{2} \ln^2(rac{s}{|t|}) \, \epsilon^2(t) +
ight)$$

An ansatz seems natural:

 $A_8(s,t)=\,A^{(0)}(s,t)\,\left(rac{s}{|t|}
ight)$

$$D_{\mu
u}(s,q^2) = -irac{g_{\mu
u}}{q^2} \left(rac{s}{\mathbf{k}^2}
ight)^{\epsilon(q^2)}$$

The reggeization of the gluon; Bootstrap equation

[Lectures by Greg Chachamis]

The high-energy resummation

Gluon Reggeization in pQCD

- \diamond Gluon quantum numbers in the *t*-channel: 8⁻ representation
- \diamond Regge limit: $s \simeq -u \rightarrow \infty$, t not growing with s
- \rightarrow amplitudes governed by gluon Reggeization \rightarrow
 - $\xrightarrow{\text{feature}}$ all-order resummation: **LLA** $[\alpha_s^n(\ln s)^n] + \text{NLA} [\alpha_s^{n+1}(\ln s)^n]$ consequence
 factorization of elastic and real part of inelastic amplitudes
 example Elastic scattering process: $A + B \longrightarrow A' + B'$

$$D_{\mu\nu} = -i\frac{g_{\mu\nu}}{q^2} \left(\frac{s}{s_0}\right)^{\alpha_g(q^2)-1}$$

Gluon Reggeization in pQCD

- Gluon quantum numbers in the *t*-channel: 8⁻ representation \diamond
- \diamond Regge limit: $s \simeq -u \rightarrow \infty$, t not growing with s
- amplitudes governed by gluon Reggeization \rightarrow \rightarrow

 $\xrightarrow{\text{feature}}$ all-order resummation: **LLA** $[\alpha_s^n(\ln s)^n] + \text{NLA} [\alpha_s^{n+1}(\ln s)^n]$ consequence factorization of elastic and real part of inelastic amplitudes $\xrightarrow{\text{example}}$ Elastic scattering process: $A + B \longrightarrow A' + B'$

$$D_{\mu\nu} = -i\frac{g_{\mu\nu}}{q^2} \left(\frac{s}{s_0}\right)^{\alpha_g(q^2)-1}$$

$$\begin{array}{c} \overbrace{} A' \\ & \left(\mathcal{A}_8^{-}\right)_{AB}^{A'B'} = \mathop{\Gamma_{A'A}^c} \left[\left(\frac{-s}{-t}\right)^{j(t)} - \left(\frac{s}{-t}\right)^{j(t)} \right] \mathop{\Gamma_{A'A}^c} \\ & j(t) = 1 + \omega(t) , \quad j(0) = 1 \\ & \omega(t) \rightarrow \text{Reggeized gluon trajectory} \\ & \left[\mathop{\Gamma_{A'A}^c} = g \langle A' | T^c | A \rangle \mathop{\Gamma_{A'A}^c} \rightarrow \text{PPR vertex} \\ & \hline{} T^c \rightarrow \text{fundamental } (q) \text{ or adjoint } (g) \end{array} \right]$$

QCD is the unique SM theory where all elementary particles reggeize Possible extensions: N=4 SYM, AdS/CFT,...

The BFKL Green's function

$$\operatorname{Im}_{s}(\mathcal{A}) = \frac{s}{(2\pi)^{D-2}} \int \frac{d^{D-2}q_{1}}{\vec{q}_{1}^{2}} \Phi_{A}(\vec{q}_{1}, \mathbf{s}_{0}) \int \frac{d^{D-2}q_{2}}{\vec{q}_{2}^{2}} \Phi_{B}(-\vec{q}_{2}, \mathbf{s}_{0}) \int_{\delta-i\infty}^{\delta+i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{\mathbf{s}_{0}}\right)^{\omega} G_{\omega}(\vec{q}_{1}, \vec{q}_{2})$$

Green's function is process-independent and takes care of the energy dependence

determined through the **BFKL equation** [Ya.Ya. Balitskii, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)]

$$\omega G_{\omega}(\vec{q}_1, \vec{q}_2) = \delta^{D-2}(\vec{q}_1 - \vec{q}_2) + \int d^{D-2}q K(\vec{q}_1, \vec{q}) G_{\omega}(\vec{q}, \vec{q}_1) .$$

The BFKL impact factors

Impact factors are process-dependent and depend on the hard scale, but not on the energy

 \longrightarrow known in the NLA just for few processes

The BFKL impact factors

Impact factors are process-dependent and depend on the hard scale, but not on the energy

known in the NLA just for few processes

Successful tests of NLA BFKL in the Mueller-Navelet channel with the advent of the LHC; nevertheless, *new BFKL-sensitive observables* as well as more exclusive final-state reactions are needed (di-hadron, hadron-jet, heavy-quark pair, multi-jet, production processes,...)

> (di-hadron) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016, 2017)] (four-jet) [F. Caporale, F.G.C., G. Chachamis, A. Sabio Vera (2016)] (multi-jet) F. Caporale, F.G.C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (2016, 2017, 2017)]

(MN jets) [B. Ducloué, L. Szymanowski, S. Wallon (2014); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015, 2016)] (heavy-quark pair) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2018); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M. Fucilla, A. Papa (2018)] (hadron-jet) [M.M.A. Mohammed, MD thesis (2018); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2018)]

> (_{KT} space) Ø [M. Hentschinski, K. Kutak, A. Van Hameren (2021) (κ_T & Mellin) Ø [F.G.C., M. Fucilla, D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2022)]

I.2 LL & NLL accuracy

A $\vec{q_1}$ q_1

¿ What about diffractive processes ?

Hard Diffraction: Exclusive vs Inclusive

Hard Diffraction: Exclusive vs Inclusive

Hard Diffraction: Exclusive vs Inclusive

Hard Diffraction: Exclusive vs Inclusive

(24)

Diffractive processes

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

I.3 Diffractive processes

(26)

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

Fast q/q + small-x qHybrid factorization

BFKL + Threshold

I.3 Diffractive processes

- gginduced
- High-energy factorization
- BFKL or small-x improved PDFs
- [M. Bonvini, S. Marzani (2018)]

(26)

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

Fast q/q + small-x qHybrid factorization

BFKL + Threshold

High-energy factorization

BFKL or small-x improved **PDFs**

[M. Bonvini, S. Marzani (2018)]

I.3 Diffractive processes

gg induced

Large rapidity distances, $\Delta Y \gg 1$ High energies, moderate x PDFs + t-channel BFKL (NLL/NLO HyF) Imbalance logs

back-to-back

Single-forward emissions

High-energy factorization and the UGD

- - \diamond

I.3 Diffractive processes

• example: virtual photoabsorption in high-energy factorization

 $\sigma_{\text{tot}}(\gamma^* p \to X) \propto \Im m_s \{ \mathcal{A}(\gamma^* p \to \gamma^* p) \} \equiv \Phi_{\gamma^* \to \gamma^*} \circledast \mathcal{F}(x, \kappa^2)$

 $\Rightarrow \mathcal{F}(x, \kappa^2)$ is the unintegrated gluon distribution (UGD) in the proton

Diffractive $\gamma^* P$ scatterings and color dipoles

$$W_{\mu\nu} \propto \operatorname{Im}\left\{i\int \mathrm{d}^4 x \, e^{i\,q\cdot x} \left\langle P \,|\, \operatorname{T}\left[J_{\mu}(x) \, J_{\nu}(0)\right] \,|\, P\right\rangle\right\}$$

- * Small-x \Rightarrow loffe time $\gg R_P$
- * At least one J_{μ} <u>outside</u> proton...

* ...color dipole picture!

Single-central emissions

Small-x resummation: Altarelli-Ball-Forte & HELL

(31)

I.3 Diffractive processes

Small-x resummation: Altarelli-Ball-Forte & HELL

Forward-backward emissions

Mueller-Navelet jets: The "Mother" reaction

I.3 Diffractive processes

[A. H. Mueller, H. Navelet, Nucl. Phys. B 282 (1987) 727-744]

From jets to hadrons

Inclusive di-hadron production

[D.Yu. Ivanov, A. Papa (2012)] (NLO forward-hadron impact factor) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016, 2017)]

I.3 Diffractive processes

Inclusive hadron-jet production

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2018)]

34

Electroweak & Higgs physics

Drell-Yan-plus-jet production

[K.J. Golec-Biernat, L. Motyka, T. Stebel (2018)] [F.G. C., D. Gordo Gómez, M. Hentschinski, A. Sabio Vera (in progress)]

Iarge invariant masses stabilize the resummation series

 \diamond p_T -distributions probe kinematic ranges sensitive also to other resummations

I.3 Diffractive processes

Higgs-plus-jet production

[B. Xiao, F. Yuan (2018)] [F.G. C., M.M.A. Mohammed, A. Papa (in preparation)]

35

Heavy-flavor physics: Open-quark states

Inclusive heavy-flavored jet photo- and hadroproduction

[F.G. C., D.Yu. Ivanov, B. Murdaca, A. Papa (2018)]

...convolution with FFs to describe *heavy-light meson* emissions \diamond

…extension of our formalism

Diffractive processes

[A.D. Bolognino, F.G. C., M. Fucilla, D.Yu. Ivanov, A. Papa (2019)]

[A.D. Bolognino, F.G. C., M. Fucilla, D.Yu. Ivanov, A. Papa (in progress)]

to calculate (q, \bar{q}) bound-state impact factors

(36)

More exclusive final states

Inclusive multi-jet production

[F. Caporale, G. Chachamis, B. Murdaca, A. Sabio Vera (2015)] [F. Caporale, F.G.C., G. Chachamis, A. Sabio Vera (2016)] [F. Caporale, F.G.C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (2016, 2017)]

 \diamond new BFKL observables (multi-jet), quarkonium-prod. mechanisms (J/Ψ +jet) \diamond collinear contaminations (multi-jet), early-stage phenomenology (J/Ψ +jet)

I.3 Diffractive processes

Inclusive J/Ψ -plus-jet production

[R. Boussarie, B. Ducloué, L. Szymanowski, S. Wallon (2018)]

(37)

Lecture I Checkpoint

Checkpoint of Lecture I

<u>BFKL resummation</u> \Rightarrow Needed to access <u>high-energy QCD</u>

Checkpoint of Lecture I

BFKL resummation \Rightarrow Needed to access high-energy QCD

BFKL Green's function \Rightarrow Small-x evolution of proton UGD

Checkpoint of Lecture I

BFKL Green's function \Rightarrow Small-x evolution of proton UGD

Checkpoint of Lecture I

- BFKL resummation \Rightarrow Needed to access high-energy QCD

Forward-backward processes \Rightarrow Test field for Hard Diffraction

Lecture I: Summary & Outlook

Forward-backward processes \Rightarrow Test field for Hard Diffraction

Hunting BFKL at the LHC as well as at new-generation colliders

Checkpoint of Lecture I

BFKL resummation \Rightarrow Needed to access high-energy QCD

BFKL Green's function \Rightarrow Small-x evolution of proton UGD

OCD & RESUMMATIONS

High-energy physics

Proton structure

High-energy physics

- Precision studies \leftarrow <u>SM</u> and <u>beyond</u>
- Fixed-order <u>perturbative</u> calculations...
- …enhanced by resummations
- SM measurements: H, W, Z mass

Proton structure

High-energy physics

- Precision studies \leftarrow SM and beyond
- Fixed-order <u>perturbative</u> calculations...
- …enhanced by resummations
- SM measurements: H, W, Z mass

- Inner structure \leftarrow <u>intrinsic parton</u> motion
- * Parton densities \Rightarrow nonperturbative nature
- Extracted from experiments via global fits
- Several types: 1D collinear, 3D TMD, and so on

High-energy physics

- Precision studies \leftarrow SM and beyond
- Fixed-order <u>perturbative</u> calculations...
- …enhanced by resummations
- SM measurements: H, W, Z mass

High-energy physics assumes knowledge of proton structure

Reduction of uncertainties on parton densities from high-energy studies

High-energy physics

- Precision studies \leftarrow SM and beyond
- Fixed-order <u>perturbative</u> calculations...
- …enhanced by resummations
- SM measurements: H, W, Z mass

High-energy physics assumes knowledge of proton structure

Perturbative and nonperturbative aspects ⇔ key ingredients to a joint search for <u>New Physics</u>

First experimental evidence of color

- Existence of the $\Delta^{++} \equiv |uuu\rangle$ resonance with spin 3/2 $\rightarrow |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$
- Spacial wave function is symmetric \rightarrow Pauli's principle would be violated
- Color number introduced to restore its validity \rightarrow hadrons are colorless

First experimental evidence of color

R-ratio \rightarrow ratio of (e^+e^-) to hadrons) / (e^+e^-) to $\mu^+\mu^-$

$$R \equiv \frac{e^+e^- \rightarrow \text{hadrons}}{e^+e^- \rightarrow \mu^+\mu^-} \propto I$$

Data compatible with $N_c = 3$

- Existence of the $\Delta^{++} \equiv |uuu\rangle$ resonance with spin 3/2 $\rightarrow |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$
- Spacial wave function is symmetric \rightarrow Pauli's principle would be violated
- Color number introduced to restore its validity \rightarrow hadrons are colorless

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)

Quarks are like leptons, but there are three of each (color)

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)

Gluons are like photons, but there are eight of each

Quarks are like leptons, but there are three of each (color)

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)

Gluons are like photons, but there are eight of each

Gluons interact with themselves, photons do not

Quarks are like leptons, but there are three of each (color)

Parton Distribution Functions & Fragmentation Functions

PDFs & FFs \rightarrow relevant for the search of **New Physics** from a **precision background**

Describe the internal structure of the nucleon (PDFs) and the dynamic formation of hadrons (FFs)

Nonperturbative objects that enter the expression of cross sections

Can be *extracted* from experiments via *global fits*

\rightarrow ... crucial role in the understanding and <u>exploration</u> of **QCD**

Parton Distribution Functions & Fragmentation Functions

PDFs & FFs \rightarrow relevant for the search of **New Physics** from a **precision background**

Nonperturbative objects that enter the expression of cross sections

Can be *extracted* from experiments via *global fits*

Several types of functions (**1D collinear**, 3D TMD, 3D GPD, ...)

- Follow from different **factorization theorems**
- Exhibit peculiar **universality properties**
- Obey distinct **evolution equations**

- \rightarrow ... crucial role in the understanding and <u>exploration</u> of **QCD**
- Describe the internal structure of the nucleon (PDFs) and the dynamic formation of hadrons (FFs)

Inelastic scattering process $A + B \rightarrow \tilde{A} + \tilde{B} + n$ in the LLA

BFKL in the LL approximation

BFKL in the LL approximation

Elastic amplitude $A + B \longrightarrow A' + B'$ in the LLA via s-channel unitarity

$$\mathcal{A}_{AB}^{A'B'} = \sum_{\mathcal{R}} (\mathcal{A}_{\mathcal{R}})_{AB}^{A'B'}$$

The 8⁻ color representation is important for the bootstrap, i.e. the consistency between the above amplitude and that with one Reggeized gluon exchange

,

 $\mathcal{R} = 1$ (singlet), 8^- (octet), ...

BFKL impact factors known within NLL

- Impact factors are process-dependent and depend on the hard scale, but not on the energy known in the NLA just for few processes
- colliding partons \Diamond

- $\diamond \gamma^* \longrightarrow V$, with $V = \rho^0$, ω , ϕ , forward case
- forward jet production \Diamond

forward identified hadron production \diamond

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni, G. Rodrigo (2000)]

[D.Yu. Ivanov, M.I. Kotsky, A. Papa (2004)]

[J. Bartels, D. Colferai, G.P. Vacca (2003)] (exact IF) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, A. Perri (2012)] (small-cone IF) [D.Yu. Ivanov, A. Papa (2012)] (several jet algorithms discussed) [D. Colferai, A. Niccoli (2015)]

[D.Yu. Ivanov, A. Papa (2012)]

[J. Bartels et al. (2001), I. Balitsky, G.A. Chirilli (2011, 2013)]

- * Semi-inclusive processes
- * $\kappa_T \ll$ hardest scale
- * Language of parton correlators
- Diagram: SIDIS onium

- * Semi-inclusive processes
- * $\kappa_T \ll$ hardest scale
- Language of parton correlators
- Diagram: SIDIS onium

- * Inclusive or exclusive processes (!)
- * Small x, large κ_T
- Language of Reggeized gluons
- Diagram: DIS

- (Fadin-Martin theorem)
- * $\kappa_T \ll$ hardest scale
- Language of parton correlators
- * Diagram: SIDIS onium

- * Inclusive or exclusive processes (!)
- * Small x, large κ_T
- * Language of Reggeized gluons
- Diagram: DIS

Exclusive forward ρ -meson leptoproduction

Exclusive forward ρ -meson leptoproduction

Leading helicity amplitudes are known

- - \rightarrow same physical mechanism, scattering of small transverse size of dipole on the proton target, at work \Rightarrow high-energy factorization

$$\sum_{\rho \lambda_{\gamma}} (s; Q^2) = is \int \frac{d^2 \kappa}{(\kappa^2)^2} \Phi^{\gamma^*(\lambda_{\gamma}) \to \rho(\lambda_{\rho})} (\kappa^2, Q^2) \mathcal{F}(x, \kappa^2), \quad x = \frac{Q^2}{s}$$

Toward precision studies of high-energy QCD?

Conclusions and Outlook

Direction 1. Semi-hard reactions as probes of BFKL

- be effectively disengaged from (pure) fixed-order, DGLAP ones

Direction 2. BFKL as tool

- threshold, transverse-momentum, Sudakov)
- quarkonia

(talk by Michael) [Cosenza Collaboration (2018, 2019, in progress)]

• Distinctive signals of the **high-energy resummation** emerge at the energies and at the exclusive kinematic congurations of **current** LHC analyses, and can

Successful tests with NLA accuracy in the Mueller-Navelet configuration; nevertheless, new sensitive observables as well as more exclusive final states are needed. Feedback from the experimental Collaboration is **essential**

Analyses of more differential distributions covering broader kinematic ranges require an ineludible effort to develope a *transversal formalism* in which distinct resummations are concurrently encoded (high-energy/small-x,

From open to bound heavy-quark states: an ongoing program (theory + pheno) on the description of heavy-flavored jets, heavy-light mesons and