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¿ What is factorization ?

🤔



 Vital component of QCD    no predictive power in hadronic reactions otherwise 

 Consequence of decoupling of long-distance dynamics from short-distance one 

 Proof of factorization highly non trivial    "as complex as proof of renormalization" 

 Exception rather than rule: valid for a few processes, assumed in pheno studies 

 Different kinds of factorization    PDF universality, evolution equations

→

→

→

Factorization in QCD
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2. Unraveling hadron structure

has canonical dimension 2 (in a frame where dim[n�] = �1) and its matrix ele-
ments on the proton states contribute to cross sections as (M/Q)0. We will see in
Sec. 2.6.3 that the operator in (2.3.9) is related to the unpolarized and Sivers quark
distributions. The same counting holds for the operator

Fn�i(0)Fn�j(x) , (2.3.10)

which represents the gluon content of the proton at twist-2 (see Sec. 2.6.4).
Thanks to the twist decomposition and considering the possibility of introduc-

ing perturbative corrections, it is possible to give a description of QCD-observables
based on a double expansion in ↵s and M/Q, as illustrated in Fig. 2.6. In Chap. 3

1

1

↵s ↵2
s

M/Q

(M/Q)2

· · ·

· · ·

power
corrections

perturbative
corrections

twist
expansion

coupling
expansion

QCD
observables

Figure 2.6. A physical observable can be expanded in terms of two parameters: the
coupling constant ↵s, quantifying the zoom in the perturbative structure of the theory,
and the ratio M/Q, quantifying the level of accuracy in the nonperturbative structure of
QCD. For a specific correlator, the twist expansion is limited to a certain order, whereas
the perturbative one is not.

a further expansion will be added, in terms of logarithmic corrections arising from
the renormalization/factorization scale.

Since the hadronic tensor in DIS is dominated by the light-cone region x2 ⇠ 0,
we will work with the light-cone expansion for four-vectors, relying on a light-
cone basis (see Sec. 2.6 and A). Accordingly, the theory will be quantized at fixed
light-cone time ⇠.n = ⇠+ = 0 and not at “standard time” ⇠0 = 0. In standard
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¿ What is a resummation ?

🤔
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Resummations in QCD

15I.1  QCD & resummations
 🔗 [Lectures by Alba Soto Ontoso]

αm
s lnn(Qi/Qj) Precision QCD    fixed-order calculations←

 Large logs (pT/parton shower, x, energy, jet radius, etc.)    spoil pQCD convergence→

 Restoring convergence    "all-order" resummations→

 More kinds of logs    multiple resummations→

https://indico.cern.ch/event/1134577/contributions/5240428/
https://indico.cern.ch/event/1134577/contributions/5240428/
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BFKL resummation
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D-2
q1

~q 2
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�A(~q1, s0)
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D-2
q2

~q 2
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�B(-~q2, s0)

�+i1Z

�-i1

d!

2⇡i

✓
s

s0

◆!

G!(~q1,~q2)

Green’s function is process-independent and takes care of the energy
dependence

�! determined through the BFKL equation
[Ya.Ya. Balitskii, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (����)]

Impact factors are process-dependent and
depend on the hard scale, but not on the energy

�! known in the NLA just for few processes

A A

~q1 ~q1

Successful tests of NLA BFKL in theMueller–Navelet channel with the
advent of the LHC; nevertheless, new BFKL-sensitive observables as well as
more exclusive �nal-state reactions are needed (di-hadron, hadron-jet,
heavy-quark pair,multi-jet, production processes,...)

(MN jets) [B. Ducloué, L. Szymanowski, S. Wallon (����); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����, ����)]
(di-hadron) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����, ����)]
(four-jet) [F. Caporale, F.G.C., G. Chachamis, A. Sabio Vera (����)]

(multi-jet) F. Caporale, F.G.C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (����, ����, ����)]
(heavy-quark pair) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M. Fucilla, A. Papa (����)]

(hadron-jet) [M.M.A. Mohammed, MD thesis (����); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (����)]

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June ��th, ���� �/��
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Green’s function is process-independent and takes care of the energy
dependence

�! determined through the BFKL equation
[Ya.Ya. Balitskii, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (����)]

Impact factors are process-dependent and
depend on the hard scale, but not on the energy

�! known in the NLA just for few processes

A A

~q1 ~q1

Successful tests of NLA BFKL in theMueller–Navelet channel with the
advent of the LHC; nevertheless, new BFKL-sensitive observables as well as
more exclusive �nal-state reactions are needed (di-hadron, hadron-jet,
heavy-quark pair,multi-jet, production processes,...)

(MN jets) [B. Ducloué, L. Szymanowski, S. Wallon (����); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����, ����)]
(di-hadron) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����, ����)]
(four-jet) [F. Caporale, F.G.C., G. Chachamis, A. Sabio Vera (����)]

(multi-jet) F. Caporale, F.G.C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (����, ����, ����)]
(heavy-quark pair) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (����); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M. Fucilla, A. Papa (����)]

(hadron-jet) [M.M.A. Mohammed, MD thesis (����); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (����)]

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June ��th, ���� �/��
(  space) 🔗 [M. Hentschinski, K. Kutak, A. Van Hameren (2021)] 

(  & Mellin) 🔗 [F.G.C., M. Fucilla, D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2022)]
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NLO Higgs
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Hard Diffraction:  Exclusive vs Inclusive

24

Meson leptoproduction

γ∗(Q2)

P
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κ2

⊗

⊗

off-shell
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Hard Diffraction:  Exclusive vs Inclusive

24

Meson leptoproduction Forward DIS
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Hard Diffraction:  Exclusive vs Inclusive

24

Meson leptoproduction Forward DIS

γ∗(Q2)

P

κ1

κ2

⊗
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off-shellΦγ*→...

𝒢BFKL

ΦP
[NP]

⊗

⊗

γ∗(Q2)
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κ1

κ2

⊗

⊗

off-shell

Cross sectio
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Amplitude
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Singly/doubly off-shell coefficient functions 

Forward/central production emission functions

High-energy factorization at a glance
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Singly/doubly off-shell coefficient functions 

Forward/central production emission functions

High-energy factorization at a glance

Collinear PDF

BFKL UGD

Fast q/g + small-x g 

Hybrid factorization 

BFKL + Threshold

BFKL UGD

BFKL UGD

gg induced 

High-energy factorization 

BFKL or small-x improved PDFs

🔗 [M. Bonvini, S. Marzani (2018)]
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Singly/doubly off-shell coefficient functions 

Forward/central production emission functions

High-energy factorization at a glance

Collinear PDF

BFKL UGD

Fast q/g + small-x g 

Hybrid factorization 

BFKL + Threshold

BFKL UGD

BFKL UGD

gg induced 

High-energy factorization 

BFKL or small-x improved PDFs

Collinear PDF

Collinear PDF

BFKL Green’s 
function

Large rapidity distances,  

High energies, moderate x 

PDFs + t-channel BFKL (NLL/NLO HyF) 

Imbalance logs    back-to-back

ΔY ≫ 1

←

ΔY

🔗 [M. Bonvini, S. Marzani (2018)]
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Single-forward emissions

📚🧐

(a)



High-energy resummation and the UGD Introductory remarks Semi-hard physics The unintegrated gluon density Summary and Outlook Backup

A brief overview

BFKL and the unintegrated gluon density (UGD)
⇧ DIS: conventionally described in terms of PDFs

⇧ less inclusive processes: need to use distributions unintegrated over the
parton T

• example: virtual photoabsorption in high-energy factorization

�tot(�
⇤

p ! X) / Ims {A(�⇤
p ! �⇤

p)} ⌘ ��⇤!�⇤ ~ F(x,2)

⇧ F(x,2) is the unintegrated gluon distribution (UGD) in the proton

I small-x limit: UGD = [BFKL gluon ladder] ~ [proton impact factor]

...UGD has to be modeled!

Francesco Giovanni Celiberto Universidad Complutense de Madrid June �th, ���� ��/��

Unintegrated parton densities Introduction TMD factorization High-energy resummation Backup

Forward Drell–Yan dilepton production at the LHC

Hentschinski–Sabio Vera–Salas (HSS) model
I Small-x limit: UGD = [ BFKL gluon ladder ] ~ [ proton impact factor ]

⇧ Takes into account the resummation of high-energy logs

⇧ Describes the coupling of the gluon Green’s function to the proton

I Proton impact factor is non-perturbative =) UGD needs to be modeled!

⇧ Parametrization for the proton impact factor:

�P(q,Q2
0) ⌘�HSS

P (q,Q2
0) =

C

2⇡�(�)

 
q2

Q2
0

!�
e
-

q2

Q2
0

⇧ Fit to the combined HERA data for the F2(x) proton structure function
Q0 = 0.28GeV, � = 8.4, C = 1.5

[A. Sabio Vera, C. Salas, Phys. Rev. Lett. ��� (����) no.�, ������]

I Former and current analyses:

⇧ Single bottom-quark production at the LHC
[G. Chachamis, M. Deák, M. Hentschinski, G. Rodrigo, A. Sabio Vera, JHEP ���� (����) ���]

⇧ J/ and⌥ photoproduction
[I. Bautista, A. Fernandez Tellez, M. Hentschinski, Phys. Rev. D �� (����) no.�, ������]

⇧ Exclusive ⇢-meson leptoproduction at HERA
[A.D. Bolognino, F.G. C., D.Yu. Ivanov, A. Papa, arXiv:����.�����, to appear in Eur. Phys. J. C]

[A.D. Bolognino, F.G. C., D.Yu. Ivanov, A. Papa, in progress]

Francesco Giovanni Celiberto Università della Calabria & INFN-Cosenza December �th, ���� ��/��

High-energy factorization and the UGD
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rd
FT∼

1
κT

(QQ̄)

γ(*)(Q2)

κT

RP

Small-x    Ioffe time     

At least one  outside proton… 

…color dipole picture!

⇒ ≫ RP

JμWμν ∝ Im {i∫ d4x ei q⋅x ⟨P |T [Jμ(x) Jν(0)] |P⟩}

Diffractive  scatterings and color dipolesγ*P
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Single-central emissions

📚🧐

(b)



Small-x resummation:  Altarelli-Ball-Forte & 𝙷𝙴𝙻𝙻
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Small-x resummation:  Altarelli-Ball-Forte & 𝙷𝙴𝙻𝙻
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Forward-backward emissions

📚🧐

(c)



Mueller-Navelet jets:  The “Mother” reaction

33I.3  Diffractive processes

p1

x1

jet
p2

x2

(k2, y2)

jet

(k1, y1)

🔗 [A. H. Mueller, H. Navelet, Nucl. Phys. B 282 (1987) 727-744] 

https://inspirehep.net/literature/20792
https://inspirehep.net/literature/20792


From jets to hadrons
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Electroweak & Higgs physics

35I.3  Diffractive processes



Heavy-flavor physics:  Open-quark states

36I.3  Diffractive processes



More exclusive final states
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Lecture I:  Summary & Outlook

39Checkpoint of Lecture I 

  BFKL resummation      Needed to access high-energy QCD ⇒

  BFKL Green's function      Small-x evolution of proton UGD⇒

  Forward-backward processes      Test field for Hard Diffraction⇒

     Hunting BFKL at the LHC as well as at new-generation colliders
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Proton structureHigh-energy physics

 Precision studies    SM and beyond 

 Fixed-order perturbative calculations… 

 …enhanced by resummations 

 SM measurements: H, W, Z mass

⇐

High-energy QCD and the proton structure
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Proton structure

 Inner structure    intrinsic parton motion 

 Parton densities    nonperturbative nature 

 Extracted from experiments via global fits 

 Several types: 1D collinear, 3D TMD, and so on

⇐

⇒

High-energy physics

 Precision studies    SM and beyond 

 Fixed-order perturbative calculations… 

 …enhanced by resummations 

 SM measurements: H, W, Z mass

⇐

High-energy physics 
assumes knowledge 
of proton structure

Reduction of uncertainties 
on parton densities 

from high-energy studies

Perturbative and nonperturbative aspects    key ingredients to a joint search for New Physics  ⇔

High-energy QCD and the proton structure



First experimental evidence of color

 Existence of the    resonance with spin  3/2       

            Spacial wave function is symmetric      Pauli’s principle would be violated 

            Color number introduced to restore its validity      hadrons are colorless

Δ++ ≡ |uuu⟩ → |u↑u↑u↑⟩

→

→



First experimental evidence of color

 Existence of the    resonance with spin  3/2       

            Spacial wave function is symmetric      Pauli’s principle would be violated 

            Color number introduced to restore its validity      hadrons are colorless

Δ++ ≡ |uuu⟩ → |u↑u↑u↑⟩

→

→

 -ratio      ratio of (   to  hadrons) / (   to  ) 

            

           Data compatible with  

R → e+e− e+e− μ+μ−

Nc = 3
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Quantum ElectroDynamics vs ChromoDynamics

 Quarks are like leptons, but there are three of each (color)

 Gluons are like photons, but there are eight of each

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)



Quantum ElectroDynamics vs ChromoDynamics

 Quarks are like leptons, but there are three of each (color)

 Gluons are like photons, but there are eight of each

 Gluons interact with themselves, photons do not

Quantum Electromagnetism (QED) versus Strong Interactions (QCD)



 PDFs & FFs    relevant for the search of New Physics from a precision background  

                              …crucial role in the understanding and exploration of QCD 

  Describe the internal structure of the nucleon (PDFs) and the dynamic formation of hadrons (FFs) 

  Nonperturbative objects that enter the expression of cross sections 

  Can be extracted from experiments via global fits

→

→

Parton Distribution Functions & Fragmentation Functions



 PDFs & FFs    relevant for the search of New Physics from a precision background  

                              …crucial role in the understanding and exploration of QCD 

  Describe the internal structure of the nucleon (PDFs) and the dynamic formation of hadrons (FFs) 

  Nonperturbative objects that enter the expression of cross sections 

  Can be extracted from experiments via global fits

→

→

 Several types of functions (1D collinear, 3D TMD, 3D GPD, …) 

  Follow from different factorization theorems 

  Exhibit peculiar universality properties 

  Obey distinct evolution equations

Parton Distribution Functions & Fragmentation Functions
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BACKUP slides
BFKL in the LLA (I)

Inelastic scattering process A + B ! Ã + B̃ + n in the LLA

multi-Regge kinematics

ReAÃB̃+n

AB
= 2s �

c1

ÃA

 
nY

i=1

�
Pi

cici+1
(qi, qi+1)

✓
si

sR

◆!(ti) 1

ti

!
1

tn+1

✓
sn+1

sR

◆!(tn+1)

�
cn+1

B̃B

�
Pi

cici+1
(qi, qi+1) ! RRG vertex

sR ! energy scale, irrelevant in the LLA
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BACKUP slides
BFKL in the LLA (II)

Elastic amplitude A + B �! A
0 + B

0 in the LLA via s-channel unitarity

A
A
0
B
0

AB
=

X

R

(AR)A
0
B
0

AB
, R = � (singlet), �- (octet), . . .

The �- color representation is important for the bootstrap, i.e. the consistency
between the above amplitude and that with one Reggeized gluon exchange

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June ��th, ����

BFKL in the LL approximation



BACKUP slides

Impact factors are process-dependent and
depend on the hard scale, but not on the energy
�! known in the NLA just for few processes

A A

~q1 ~q1

⇧ colliding partons
[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (����)]

[M. Ciafaloni, G. Rodrigo (����)]

⇧ �* �! V, with V = ⇢0, !, �, forward case
[D.Yu. Ivanov, M.I. Kotsky, A. Papa (����)]

⇧ forward jet production

[J. Bartels, D. Colferai, G.P. Vacca (����)]
(exact IF) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, A. Perri (����)]

(small-cone IF) [D.Yu. Ivanov, A. Papa (����)]
(several jet algorithms discussed) [D. Colferai, A. Niccoli (����)]

⇧ forward identi�ed hadron production
[D.Yu. Ivanov, A. Papa (����)]

⇧ �* �! �*
[J. Bartels et al. (����), I. Balitsky, G.A. Chirilli (����, ����)]

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June ��th, ����

BFKL impact factors known within NLL
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TMD versus high-energy factorization
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Semi-inclusive processes 
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P
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⊗

⊗

Φγ*→γ*

𝒢BFKL

ΦP
[NP]

⊗

⊗

off-shell

IR-safe colorless  
(Fadin-Martin theorem) 

🔗  [V.S. Fadin, A.D. Martin (1999)]

{Φi→o}

TMD versus high-energy factorization

https://inspirehep.net/literature/499163
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Semi-inclusive processes 

 hardest scale 

Language of parton correlators 
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𝒢BFKL
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off-shell

IR-safe colorless  
(Fadin-Martin theorem) 

🔗  [V.S. Fadin, A.D. Martin (1999)]

{Φi→o}

Q2

Q2
0

IR diffusion pattern 
(Bartels’ cigar) 

🔗  [J. Bartels, H. Lotter (1993)]

TMD versus high-energy factorization
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Leptoproduction of⇢-mesons

Leptoproduction of ⇢mesons at HERA
e-p collisions provide:

�⇤ + proton �! ⇢ + proton ...exclusive process!

High-energy regime:
s ⌘ W2 � Q2 � ⇤2

QCD =) small x = Q2

W2

photon virtuality Q is the hard scale of the process

I Process solved in helicity =) so far unexplored test�eld for UGD

=) constrain T-dependence of UGD in the HERA energy range

2.5 GeV2 < Q2 < 60 GeV2

35 GeV < W < 180 GeV

I Hierarchy of helicity amplitudes: T00 � T11 � T10 � T01 � T1-1
[H� collaboration: F.D. Aaron et al., JHEP �� ��� (����)]

I HERA data available for T11/T00 [H� collaboration: F.D. Aaron et al., JHEP �� ��� (����)]

I ⇢-meson via distribution amplitudes (DAs): '(y) = 'WW(y)+'gen(y)
Francesco Giovanni Celiberto Leptoproduction of⇢-mesons and the UGD September ��st, ���� �/ ��

Exclusive forward -meson leptoproductionρ
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e-p collisions provide:
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High-energy regime:
s ⌘ W2 � Q2 � ⇤2

QCD =) small x = Q2

W2

photon virtuality Q is the hard scale of the process

I Process solved in helicity =) so far unexplored test�eld for UGD

=) constrain T-dependence of UGD in the HERA energy range

2.5 GeV2 < Q2 < 60 GeV2

35 GeV < W < 180 GeV

I Hierarchy of helicity amplitudes: T00 � T11 � T10 � T01 � T1-1
[H� collaboration: F.D. Aaron et al., JHEP �� ��� (����)]

I HERA data available for T11/T00 [H� collaboration: F.D. Aaron et al., JHEP �� ��� (����)]

I ⇢-meson via distribution amplitudes (DAs): '(y) = 'WW(y)+'gen(y)
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Helicity amplitudes in high-energy factorization

Helicity Amplitudes in high-energy factorization

I Leading helicity amplitudes are known

Assumption:

Ims {A(�⇤p ! ⇢ p)}
same W- and t-dependence for T11 and T00 =) high-energy
factorization
! same physical mechanism, scattering of small transverse size of

dipole on the proton target, at work ) high-energy factorization

T�⇢��(s;Q2) = is
Z

d2

(2)2 �
�⇤(��)!⇢(�⇢)(2,Q2)F(x,2) , x =

Q2

s

Interesting transitions:

�⇤
L ! ⇢L

encoded by�����! ��⇤
L !⇢L

�⇤
T ! ⇢T

encoded by�����! ��⇤
T !⇢T

=) DAs enter in ��⇤!⇢

Francesco Giovanni Celiberto Leptoproduction of⇢-mesons and the UGD September ��st, ���� �/ ��

Exclusive forward -meson leptoproductionρ



Toward precision studies of high-energy QCD?


