

Jet physics in 2024

Alba Soto Ontoso Midsummer School in QCD Saariselkä, 25-27th June, 2024

Plan for the course

Lecture 1: big picture

- Why jets?
- $\gamma^* \rightarrow q\bar{q}g$: singularity structure
- Resummation and parton showers

Lecture 3: jet substructure

- Concepts and tools
- Observables at the LHC

Lecture 2: jet algorithms

- Core ideas of jet reconstruction
- Sequential recombination algorithms
- The question of flavour

• Calculability: groomed jet mass

A few useful references

- Towards jetography, G.P. Salam
- object phenomenology, S. Marzani, G. Soyez, M. Spannowsky
- and machine learning, A. Larkoski, I. Moult, B. Nachman
- Fastjet user manual, M. Cacciari, G.P. Salam, G. Soyez

Questions? Drop me a line: alba.soto.ontoso at cern.ch

• Looking inside jets: an introduction to jet substructure and boosted-

• Jet substructure at the LHC: A review of recent advances in theory

What are jets? Experimental observation

One, of many, definitions: collimated, energetic bunches of hadrons

Interactive view of a dijet event: https://cms3d.web.cern.ch/SMP-20-011/

What are jets? Numerical simulation

0.002

Color coding: incoming beam particles intermediate particles (quarks or gluons) final particle (hadron)

Event evolution spans 7 orders of magnitude in space-time

Jets are very popular at the LHC

Find all papers by ATLAS and CMS

[Sour	ce:ins	<u>pire-hep]</u>									
literat	literature <> (collaboration:ATLAS or collaboration:CMS) and reportnumber:CERN*										
				Literature	Authors	Jobs	Seminars	Conferences	More		
	2,856 re	sults ⊡	cite all						Citation Summary	Most Recent \smallsetminus	
	Measurement of the polarizations of prompt and non-prompt J/ ψ and ψ (2S) mesons produced in pp collisions at \sqrt{s} = 13 TeV CMS Collaboration • Aram Hayrapetyan (Yerevan Phys. Inst.) et al. (Jun 20, 2024) e-Print: 2406.14409 [hep-ex]										
0	🔓 pdf	[∃ cite	🗟 claim						R reference search		
)24	Combination of searches for Higgs boson pair production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector ATLAS Collaboration • Georges Aad (Marseille, CPPM) et al. (Jun 14, 2024) e-Print: 2406.09971 [hep-ex]										
	🖪 pdf	[→ cite	🗐 claim						C reference search	\rightarrow 0 citations	
	Search for a resonance decaying to a W boson and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV using leptonic W boson decays CMS Collaboration • Aram Hayrapetyan (Yerevan Phys. Inst.) et al. (Jun 9, 2024) e-Print: 2406.05737 [hep-ex]										
	占 pdf	[→ cite	🗄 datasets 📑	claim					C reference search	\ominus 0 citations	

2856 records found

Jets are very popular at the LHC

[Source:inspire-hep] Find all papers by ATLAS and CMS that cite a jet algorithm

literature $ \smallsetminus $	(collaboratio	n:ATLAS or col	laboration:CMS) and re	portnumber:CE	RN* and refers	to:recid:779080					
			Literature	Authors	Jobs	Seminars	Conferences	More			
1,849 re	esults 📑	cite all						Citation Summary	Most Recent \smallsetminus		
Searc CMS C e-Print	Search for a resonance decaying to a W boson and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV using leptonic W boson decays CMS Collaboration • Aram Hayrapetyan (Yerevan Phys. Inst.) et al. (Jun 9, 2024) e-Print: 2406.05737 [hep-ex]										
🔓 pdi	f [→ cite	🗄 datasets	🗟 claim					C reference search	\bigcirc 0 citations		
Meas CMS C e-Print	Measurement of inclusive and differential cross sections for W^+W^- production in proton-proton collisions at $\sqrt{s} = 13.6$ TeV CMS Collaboration • Aram Hayrapetyan (Yerevan Phys. Inst.) et al. (Jun 7, 2024) e-Print: 2406.05101 [hep-ex]										
🖾 pdi	f ⊡ cite	🗟 claim						c reference search			
Obse CMS C e-Print	Observation of quantum entanglement in top quark pair production in proton-proton collisions at $\sqrt{s} = 13$ TeV CMS Collaboration (Jun 6, 2024) e-Print: 2406.03976 [hep-ex]										
🖾 pdf	f ⊡ cite	🗟 claim						c reference search			

1849 records found: >60% of papers use jets!

Jets have been instrumental for (at least) 2 discoveries

[Source: symmetry magazine]

Jets have been instrumental for (at least) 2 discoveries

[Source: cern courier]

[Source: symmetry magazine]

Why do quarks and gluons fragment into jets?

AUN 447 EVENT 13177 EBEAM 13.7 GEV SPHE BIG CIRCLE AT 2.000 GEV	JETI	ΣIP: I _{charge} 4.3 GEV	TOTAL ENERGY 7.4 G EV
	JET2	7.8	8.9
I SERID-F355LH PLOTID-NORMPLOT PLOTNR-0063 FLOT PHDED AT 231640 ON 790624 FLOT RECEIVED FROM F365LH TSUSER NEALIST M	JET 3	4.1 mc	11.1
an a	occoccoccocc F353LJ inc occoccocccc F353LJ inc occoccccccc F353LJ inc	199923 Xalabidə Sələt (2005) 19992 - Xalabidə Sələt (2005) 19992 - Xalabidə Sələt (2005)	
•	FIG	URE 3	

Leading order calculation: $e^+e^- \rightarrow q\bar{q}$ [Adapted from Soyez's lectures]

Phase-space: $\int d\frac{1}{2} = \int \frac{d^{4}k_{2}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}}$ (2) $=\frac{1}{1677}\int_{0}^{1}d\cos\theta$

Matrix element: $\sum M^{2} \sim Tr(P, V, h^{2})$

Cross section: $d\sigma = \frac{1}{2s} IM^2 d\sigma_2 = \int \frac{d}{dc}$

electron: $p_{1} = (0, 0, \frac{1}{2}, \frac{1}{2})$ positron: $p_{2} = (0, 0, -\frac{1}{2}, \frac{1}{2})$ Feynman gauge

$$2\pi \int^{4} \int^{4} \left(f_{1} + f_{2} - k_{1} - k_{2} \right) (2\pi) \int (k_{1}) (2\pi) \int (k_{2})$$

$$quark: \quad k_{1} = \int_{2}^{5} \left(\sin \vartheta, \vartheta, \cos \vartheta, \eta \right)$$

$$\Rightarrow antiquark: \quad k_{2} = \int_{2}^{5} \left(-\sin \vartheta, \vartheta, -\cos \vartheta, \eta \right)$$

Phase-space: $\int d\phi_{3} = \int_{1}^{3} \frac{d^{3}K_{i}}{(2\pi)^{3}2E_{i}} (2\pi)^{4} \delta^{(4)} (p_{1}+p_{2}-K_{1}-K_{2}-K_{3}) ; \quad x_{i} = \frac{2E_{i}}{I_{s}} =$

$$X_{1} + X_{2} + X_{3} = Z$$

$$= \frac{2E_{1}}{2E_{1}} = \frac{d^{3}K_{1}}{(2\pi)^{2}2E_{1}} = \frac{5}{8} \frac{1}{(2\pi)^{3}} X_{1}$$

Matrix element: $\overline{\Sigma} |M|^2 \propto \chi_e^2 \chi_s G_F$

Cross section: integrated over Euler angles

 $dx_1 dx_2$ Born-Level

2 real contributions

3 virt

$$\frac{N_{c}}{N_{c}} \frac{(P_{1}.K_{1})^{2} + (P_{1}.K_{2})^{2} + (P_{2}.K_{1})^{2} + (P_{2}.K_{2})^{2}}{(K_{1}.K_{3}) (K_{2}.K_{3})}$$

$$\frac{\chi_{s}C_{F}}{\chi_{1}} \frac{\chi_{1}^{2} + \chi_{2}^{2}}{(I-\chi)[I-\chi_{2}]} \qquad \text{with } D \leq \chi_{1}, \chi_{2} \leq 1$$

$$\frac{M_{c}}{M_{c}} \frac{M_{c}}{M_{c}} \frac{M_{c}}{M_{$$

cross section

Cross section:

er

Divergences cancelled by virtual terms

2 real contributions

all orders in the perturbative expansion (KLN theorem)

Beyond inclusive observables, concept of IRC safety emerges

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. the branching

[infrared].

Examples

Multiplicity of gluons

For inclusive cross sections, cancellation of divergences can be proven to

insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under

$ec{p_i} ightarrow ec{p_i} + ec{p_k}$

whenever \vec{p}_i and \vec{p}_k are parallel [collinear] or one of them is small

[QCD and Collider Physics (Ellis, Stirling & Webber)]

all orders in the perturbative expansion (KLN theorem)

Beyond inclusive observables, concept of IRC safety emerges

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. the branching

[infrared].

1

Examples

Multiplicity of gluons is not IRC safe

For inclusive cross sections, cancellation of divergences can be proven to

insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under

$ec{p_i} ightarrow ec{p_i} + ec{p_k}$

whenever \vec{p}_i and \vec{p}_k are parallel [collinear] or one of them is small

[QCD and Collider Physics (Ellis, Stirling & Webber)]

[modified by soft/collinear splitting]

all orders in the perturbative expansion (KLN theorem)

Beyond inclusive observables, concept of IRC safety emerges

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. the branching

[infrared].

Examples

Multiplicity of gluons is not IRC safe

Energy of hardest particle

For inclusive cross sections, cancellation of divergences can be proven to

insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under

$ec{p_i} ightarrow ec{p_i} + ec{p_k}$

whenever \vec{p}_i and \vec{p}_k are parallel [collinear] or one of them is small

[QCD and Collider Physics (Ellis, Stirling & Webber)]

[modified by soft/collinear splitting]

all orders in the perturbative expansion (KLN theorem)

Beyond inclusive observables, concept of IRC safety emerges

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. the branching

[infrared].

Examples

Multiplicity of gluons is not IRC safe

Energy of hardest particle is not IRC safe

- - -

For inclusive cross sections, cancellation of divergences can be proven to

insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under

$ec{p_i} ightarrow ec{p_i} + ec{p_k}$

whenever \vec{p}_i and \vec{p}_k are parallel [collinear] or one of them is small [QCD and Collider Physics (Ellis, Stirling & Webber)]

> [modified by soft/collinear splitting] [modified by collinear splitting]

all orders in the perturbative expansion (KLN theorem)

Beyond inclusive observables, concept of IRC safety emerges

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. the branching

[infrared].

Examples

Multiplicity of gluons is not IRC safe Energy of hardest particle is not IRC safe

Energy flow into a cone is IRC safe

For inclusive cross sections, cancellation of divergences can be proven to

insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under

$ec{p_i} ightarrow ec{p_i} + ec{p_k}$

whenever \vec{p}_i and \vec{p}_k are parallel [collinear] or one of them is small

[QCD and Collider Physics (Ellis, Stirling & Webber)]

[modified by soft/collinear splitting]

[modified by collinear splitting]

[soft emissions don't change energy flow, collinear emissions don't change its direction]

Soft a

QCD radiation logarithmically enhanced in soft and collinear limits

ear limit:
$$d\sigma = (e_{\varphi}^{2} \sigma_{0} N_{c}) \propto (F - \frac{1}{2} + \frac{1}{2})^{2} dz = \frac{1}{2} \frac$$

as L

Additional gluon radiation is angular ordered, i.e. confined within a cone of angle $\theta_2 < \theta_1$. Fundamental property for parton showers.

Soft and collinear limit:

Why do we see jets? [Adapted from Salam's lectures]

and small-angle (collinear) gluons

giving a collimated jet of partons (mostly gluons) that hadronize at \mathbb{E}^{\times}

Starting from energetic quark, emit a cascade of many low-energy (soft)

Why do we

The hadrons go in similar directions to the partons.

Why do we

Jets as cones of radius R around QCD radiation

Why do we see jets? [Adapted from Salam's lectures]

Starting from energetic quark, emit a cascade of many low-energy (soft) and small-angle (collinear) gluons

How do we describe jet dynamics theoretically?

Jets as cones of radius R around QCD radiation

π

ns:
$$m^2 = \left(\sum_{i \in j \in I} K_i\right)^2 \sum_{j \in I} \sum_{0}^{m^2} \int_{0}^{m^2} dm^2 d\sigma = 1 + \alpha_j z^{l/2}$$

ns:
$$m^{2} = \left(\frac{2}{i \text{ Gjet}} K_{i}\right)^{2}_{i} \sum_{j} \sum_{m} (m^{2}) = \frac{1}{\sigma} \int_{0}^{m^{2}} dm^{2} \frac{d\sigma}{dm^{2}} = A + \alpha_{5} \sum_{j}^{m}$$

 $E \left[M_{R}\right]^{2} = \frac{\alpha_{5}}{2\pi} (2G_{F}) \frac{K_{i} \cdot K_{2}}{(K_{1} \cdot K_{3}) (K_{2} \cdot K_{3})}$

ns:
$$M^{2} = \left(\sum_{i \in j \neq t}^{2} K_{i}\right)^{2}; \sum(M^{2}) = \frac{1}{\sigma} \int_{0}^{M^{2}} dM^{1} \frac{d\sigma}{dm^{2}} = A + \alpha_{j} \sum^{M} \frac{M_{i}}{dm^{2}} = A + \alpha_{j} \sum^{M} \frac{M_{i}}{dm^{2}} = \frac{1}{2\pi} \int_{0}^{M_{i}} \frac{M_{i}}{dm^{2}} = \frac{1}{\sigma} \int_{0}^{M_{i}} \frac{M$$

ns:
$$m^{2} = \left(\sum_{i \in j \in I}^{\infty} K_{i}\right)^{2}_{i} \sum (m^{2}) = \frac{1}{\sigma} \int_{0}^{m^{2}} dm^{1} \frac{d\sigma}{dm^{2}} = A + \alpha_{s} \sum^{0}_{s}$$

$$H_{R}^{2} = \frac{\alpha_{s}}{2\pi} (2C_{F}) \frac{K_{i} K_{2}}{(K_{1} \cdot K_{3}) (K_{2} \cdot K_{3})} \frac{K_{i} = \frac{Q}{2} (I_{i} \circ_{i} \circ_{i}, -1)}{(K_{1} \cdot K_{3}) (K_{2} \cdot K_{3})}$$

$$\frac{K_{2} = \frac{Q}{2} (I_{i} \circ_{i} \circ_{i}, -1)}{\sigma}$$

$$pace: \int d\phi = \int_{0}^{\infty} w dw \int_{-1}^{1} dc_{OS} \partial \int \frac{d\phi}{2\pi}$$

$$\frac{M_{1}}{\sigma} \frac{M_{2}}{2\pi}$$

$$\frac{M_{2}}{\sigma} \frac{M_{2}}{2\pi}$$

$$(A - cos \partial) (M + cos \partial)$$

$$(A - cos \partial) (M^{2}) + \bigoplus_{out-jet} - \frac{M_{1}}{2}$$

$$\frac{M_{1} - \Theta_{njet}}{M_{1} - \Theta_{njet}} \frac{M_{1} + M_{2}}{M_{1} + M_{2}}$$

ns:
$$M^{2} = \left(\frac{2}{i}\frac{K_{i}}{i}\right)^{2}; \sum(m^{2}) = \frac{1}{\sigma}\int_{0}^{m^{2}}dm^{2}\frac{d\sigma}{dm^{2}} = A + \alpha_{3}^{2}\Sigma^{0}$$

t: $|M_{R}|^{2} = \frac{4}{2\pi}(2\zeta_{F})\frac{K_{i}\cdot K_{2}}{(K_{i}\cdot K_{3})(K_{2}\cdot K_{3})} = \frac{Q}{2}|I_{i}\circ_{i}\circ_{i}1\rangle$
pace: $\int d\phi = \int_{0}^{\infty}wdw \int_{-1}^{1}dco_{2}\partial \int_{0}^{2K_{2}} = w(I, \sin\theta\cos\phi, \sin\theta)$
 $\int (R^{2}) + \partial \left(\frac{m^{2}}{R^{2}}\right) = -\frac{4}{2\pi}\int_{0}^{K}Lu^{2}\left(\frac{I}{R}\right) = \frac{4m^{2}}{R^{2}R^{2}}$
 $\int (R^{2}) + \partial \left(\frac{m^{2}}{R^{2}}\right) = -\frac{4}{2\pi}\int_{0}^{K}Lu^{2}\left(\frac{I}{R}\right) = \frac{4m^{2}}{R^{2}R^{2}}$
 $\int (R^{2}) + \partial \left(\frac{m^{2}}{R^{2}}\right) = -\frac{4}{2\pi}\int_{0}^{K}Lu^{2}\left(\frac{I}{R}\right) = \frac{4m^{2}}{R^{2}R^{2}}$

This simple exercise reveals 2 regimes: $m \sim Q$: perturbative expansion valid $m \ll Q$: potentially-large logarithms, need to resum them!

Adding collinear limit:

$A_{1} \Sigma^{(1)}(\ell) = -A_{2} \left(F \left[\frac{1}{2} \ln^{2}\left(\frac{1}{\ell}\right) + B_{2} \ln\left(\frac{1}{\ell}\right) \right]^{T}$

All-orders expression:

 $\sum_{n=0}^{\infty} \binom{n}{1} \prod_{i=1}^{\infty} \int \frac{d\Phi_{i}}{\Phi_{i}} \int dz_{i}$ $+\sum_{n=0}^{\infty}\frac{1}{n!}\prod_{i=1}^{n}\int\frac{d\theta_{i}}{\theta_{c}^{2}}\int\frac{dz}{\theta_{c}^{2}}$ $\sum_{n=0}^{\infty}\sum_{i=1}^{n}\int\frac{d\theta_{i}}{\theta_{c}^{2}}\int\frac{dz}{\theta_{c}^{2}}$

Collinear limit:

$$\sum_{i \leq j \in j \in I} K_i \cdot K_j = \sum_{i \leq j \in j \in I} W_i W_j \partial_{ij}^2 + O(\partial_{ij}^4) = Q \sum_{i \leq i \in J} W_i \partial_{ij}^2$$

$$(i \leq j \in j \in I)$$

$$\frac{\Theta[\Theta_{i} \leq R)}{p_{i}} \xrightarrow{\chi_{j}(z_{i} \oplus \frac{N}{2})} \frac{\chi_{j}(z_{i} \oplus \frac{N}{2})}{2\pi} \xrightarrow{\varphi_{i}} \frac{\Theta[\Theta_{i} \leq R)}{p_{i}} \frac{\Theta[\sum_{i=1}^{n} \frac{2i}{p_{i}} \oplus \frac{1}{p_{i}}]}{p_{i}} \left(\frac{\chi_{i}}{p_{i}} + \frac{1}{p_{i}}\right) \frac{\chi_{i}(z_{i} \oplus \frac{N}{2})}{2\pi} \left(\frac{\Theta_{i}}{p_{i}} + \frac{1}{p_{i}}\right) \frac{\nabla_{i} \nabla_{i}}{p_{i}} \left(\frac{\Theta_{i}}{p_{i}} + \frac{1}{p_{i}}\right)$$

The cumulative distribution at leading-log reads $\sum_{n=0}^{u} (p) = -\sum_{n=0}^{u} \frac{1}{p} \prod_{i=1}^{n} \int \frac{dp_i}{p} \int \frac{dz_i}{p} \frac{p}{q} (z)$ $= e X P \left[- \int_{r}^{r} \frac{de'}{p_{1}} \right] d2$

Leading-log accuracy = strong ordering

$$E_{1} \gg E_{2} \gg \dots \gg E_{n} \left\{ z_{i} \theta_{i}^{2} \text{ also ordered} \right. \\ \left. \theta_{1} \gg \theta_{2} \gg \dots \gg \theta_{n} \left\{ z_{i} \theta_{i}^{2} \text{ also ordered} \right. \right. \\ \left. \frac{2}{2i} \left\{ i < \rho \right\}_{z=1}^{n} \left\{ e_{i} < \rho \right\}_{z=1}^{n} \left\{ e_{i} < \rho \right\}_{z=1}^{n} \left\{ e_{i} < \rho \right\}_{i=1}^{n} \left\{ e_{i} < \rho \right\}_{i=1}^{n} \left\{ e_{i} < \rho \right\}_{z=1}^{n} \left\{ e_{i} < \rho \right\}_{z=1}^{n$$

$$\frac{\chi_{j}\left(\frac{2\pi i}{2\pi}\right)}{2\pi} \stackrel{\text{P}}{\rightarrow} \left[\frac{\eta_{i}}{2\pi} \right] \stackrel{\text{P}}{\rightarrow} \left[\frac{\eta_{i}}{2\pi} \right] = \text{Sudakov exponen}}$$

Fixed-order vs resummation at lowest order

Dynamics beyond leading-log accuracy for the jet mass

- So far, we have considered emissions to be soft and collinear. Corrections
 - Collinear but not soft emissions $\frac{1}{2} \rightarrow \frac{P(2)}{P}$
 - Soft but not collinear emissions

 - Running coupling at two loops β_{0} , β_{1}
 - Much more beyond NLL!

Dynamics beyond leading-log accuracy for the jet mass

So far, we have considered emissions to be soft and collinear.

Collinear but not soft emissions

Is there a way of automating logarithmic resummation? YES!

Running coupling at two loops

Much more beyond NLL!

Parton shower basics: example of radioactive decay

[Adapted from Gavin Salam]

$$\frac{dP_n}{dt} = -\mu P_n(t) \quad n \to n+1$$

How to solve this with Monte Carlo methods?

(a) start with n = 0, $t_0 = 0$

(c) if $t_{n+1} < t_{max}$, increment *n* go to step (b)

Consider decay rate μ per unit time, total time t_{max} . Find distribution of emissions

- (b) choose random number r(0 < r < 1) and find t_{n+1} that satisfies $r = e^{-\mu(t_{n+1}-t_n)}$

Parton shower basics: example of radioactive decay

- E.g. for decay rate $\mu = 1$, $t_{max} = 2$
 - start with n = 0, $t_0 = 0$
 - ► $r = 0.6 \rightarrow t_1 = t_0 + \ln(1/r) = 0.51$ [emission 1]
 - $r = 0.3 \rightarrow t_2 = t_1 + \ln(1/r) = 1.71$ [emission 2]
 - $r = 0.4 \rightarrow t_3 = t_2 + \ln(1/r) = 2.63 [> t_{max}, stop]$

How to solve this with Monte Carlo methods?

(a) start with n = 0, $t_0 = 0$

(c) if $t_{n+1} < t_{max}$, increment *n* go to step (b)

(b) choose random number r(0 < r < 1) and find t_{n+1} that satisfies $r = e^{-\mu(t_{n+1}-t_n)}$

: : :

Start with $q\bar{q}$ state.

Throw a random number to determine down to what scale, v, state persists unchanged

$$\frac{\mathrm{d}P_2(v)}{\mathrm{d}v} = -f_{2\to3}^{q\bar{q}}(v) P_2(v)$$

• Evolution variable: $v = k_t, \theta, t_f$

: : :

Start with $q\bar{q}$ state.

Throw a random number to determine down to what scale, v, state persists unchanged

$$\frac{\mathrm{d}P_2(v)}{\mathrm{d}v} = -f_{2\to3}^{q\bar{q}}(v) P_2(v)$$

• Evolution variable: $v = k_t, \theta, t_f$

: : : :

At some point, state splits $(2 \rightarrow 3, i.e. \text{ emits})$ gluon). Evolution equation changes

$$\frac{dP_3(v)}{dv} = -\left[f_{2\to3}^{qg}(v) + f_{2\to3}^{g\bar{q}}(v)\right] P_3(v)$$

• Recoil scheme: $\tilde{p}_{q,\bar{q}} \rightarrow p_{q,\bar{q},g}$

Current status of parton shower development

very active field of research

Understanding and improving the accuracy of parton showers is a

A single tool to resum them all!

[PanScales collaboration, arXiv:2406.02661]

NNLL parton showers for e^+e^- collisions is the new standard

It is set to be a set of the soft & collinear enhancements of gluon emission (even at small coupling), followed by hadronisation

Simulation: Parton showers

Tomorrow: jets are not just rigid cones!

Analytic approach: Logarithmic resummation

