HIGH-ENERGY OCD AND DIFFRACTION PART II

Francesco Giovanni Celiberto, UAH Madrid

Midsummer School in QCD 2024

24 June – 6 July 2024 Saariselkä, Finland

Table of contents

QCD & resummations - LL & NLL accuracy - Diffractive processes

Mueller-Navelet jets - Light-flavored hadrons - NLL instabilities

High-energy QCD from Higgs and heavy flavors

Higgs + jet correlations - Open heavy-flavored hadrons - Quarkonia

Proton structure and spin at small-*x*

The BFKL UGD - 3D tomography with (un)polarized gluon TMDs

Jet-jet and hadron-jet correlations

Mueller-Navelet jets - Light-flavored hadrons - NLL instabilities

Table of contents

Lecture I Highlights

The high-energy resummation

BFKL resummation

[V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975, 1976, 1977); Y.Y. Balitskii, L.N. Lipatov (1978)]

based on **gluon Reggeization**

leading logarithmic approximation (LL):

next-to-leading logarithmic approximation (NLL):

 $\alpha_s^n(\ln s)^n$

 $\alpha_s^{n+1}(\ln s)^n$

The high-energy resummation

BFKL resummation

[V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975, 1976, 1977); Y.Y. Balitskii, L.N. Lipatov (1978)]

 $\xrightarrow{\text{based on}}$ gluon Reggeization

leading logarithmic approximation (LL):

next-to-leading logarithmic approximation (NLL):

Green's function is process-independent, describes energy dependence and obeys BFKL equation; impact factors are known in the NLL just for few processes

 $\alpha_s^n(\ln s)^n$

Total cross section for $A + B \rightarrow X$: $\sigma_{AB}(s) = \frac{\Im m_s \{\mathcal{A}^{AB}_{AB}\}}{s} \iff optical theorem$ ▶ $\Im m_s \{\mathcal{A}^{AB}_{AB}\}$ factorization:

convolution of the Green's function of two interacting Reggeized gluons with the **impact factors** of the colliding particles

B B

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

Highlights of Lecture I

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

Fast <mark>q/g</mark> + small-x <mark>g</mark>	<i>99</i>
Hybrid factorization	High-ene
BFKL + Threshold	BFKL or <u>smc</u>

Highlights of Lecture I

- ginduced
- ergy factorization
- all-x improved PDFs
- [M. Bonvini, S. Marzani (2018)]

High-energy factorization at a glance

Singly/doubly off-shell coefficient functions Forward/central production emission functions

Fast <mark>q/g</mark> + small-x <mark>g</mark>	<i>99</i>
Hybrid factorization	High-ene
BFKL + Threshold	BFKL or <u>smc</u>

[M. Bonvini, S. Marzani (2018)]

Highlights of Lecture I

rinduced

ergy factorization

all-x improved PDFs

Large rapidity distances, $\Delta Y \gg 1$ High energies, moderate x PDFs + t-channel BFKL (NLL/NLO HyF) Imbalance logs

back-to-back

Mueller-Navelet jets

Mueller-Navelet jets at the LHC

$proton(p_1) + proton(p_2) \rightarrow jet_1(k_1, y_1) + X + jet_2(k_2, y_2)$

II.1 Mueller-Navelet jets

Mueller-Navelet jets at the LHC

$\operatorname{proton}(p_1) + \operatorname{proton}(p_2) \rightarrow \operatorname{jet}_1(k_1, y_1) + X + \operatorname{jet}_2(k_2, y_2)$

- two hadroproduced jets together with an undetected gluon system, X
- large jet transverse momenta (hard scales): $\vec{k}_1^2 \sim \vec{k}_2^2 \gg \Lambda_{\rm OCD}^2$ large rapidity distance between jets, $\Delta y \equiv Y = y_1 - y_2$,
- which leads to large c.o.m energies, $Y \propto \ln s$
- large parton long. fractions (collinear PDFs), but non negligible t-channel exchanged momenta (k_T -factorization) \Rightarrow hybrid approach (next slide)

II.1 Mueller-Navelet jets

Mueller-Navelet jet production within HyF

- Inclusive hadroproduction of two jets with high p_T and large rapidity separation, ΔY
- Moderate x (collinear PDFs), but t-channel p_T (BFKL resummation) \rightarrow hybrid factorization
 - $\frac{d\sigma}{dy_1 \, dy_2 \, d^2 \vec{k}_1 \, d^2 \vec{k}_2} = \sum_{r,s=q,g} \int_0^1 dx_1 \int_0^1 dx_2 \, f_r(x_1, \mu_F) f_s(x_2, \mu_F) \, \frac{d\hat{\sigma}_{r,s}(x_1 x_2 s, \mu_F)}{dy_1 \, dy_2 \, d^2 \vec{k}_1 \, d^2 \vec{k}_2}$

Mueller-Navelet jet production within HyF

Inclusive hadroproduction of two jets with high p_T and large rapidity separation, ΔY

Moderate x (collinear PDFs), but t-channel p_T (BFKL resummation) \rightarrow hybrid factorization

$$\int dx_2 f_r(x_1, \mu_F) f_s(x_2, \mu_F) \frac{d\hat{\sigma}_{r,s}(x_1x_2s, \mu_F)}{dy_1 dy_2 d^2 \vec{k}_1 d^2 \vec{k}_2}$$
jet vertices
(off-shell amplitudes)
$$\frac{d\hat{\sigma}_{r,s}(x_1x_2s, \mu)}{dy_1 dy_2 d^2 \vec{k}_1 d^2 \vec{k}_2} = \frac{1}{(2\pi)^2}$$

$$\times \int \frac{d^2 \vec{q}_1}{\vec{q}_1^2} \mathcal{V}_I^{(r)}(\vec{q}_1, s_0, x_1, \vec{k}_1) \circ$$

$$\times \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{x_1x_2s}{s_0}\right)^{\omega} \mathcal{G}_{\omega}(\vec{q}_1, \vec{q}_2) \circ$$

$$\times \int \frac{d^2 \vec{q}_2}{\vec{q}_2^2} \mathcal{V}_I^{(s)}(\vec{q}_2, s_0, x_2, \vec{k}_2) \circ$$
BFKL Green's function

Forward-jet impact factor

• take the impact factors for **colliding partons**

II.1 Mueller-Navelet jets

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni and G. Rodrigo (2000)]

Forward-jet impact factor

• take the impact factors for **colliding partons**

• "open" one of the integrations over the phase space of the intermediate state to allow one parton to generate the jet

II.1 Mueller-Navelet jets

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni and G. Rodrigo (2000)]

Forward-jet impact factor

• take the impact factors for **colliding partons**

• "open" one of the integrations over the phase space of the intermediate state to allow one parton to generate the jet

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni and G. Rodrigo (2000)]

• use QCD collinear factoriz.: $\sum_{s=q,\bar{q}} f_s \otimes [quark vertex] + f_g \otimes [gluon vertex]$

II.1 Mueller-Navelet jets

 $\frac{d\sigma}{dy_1 \, dy_2 \, d^2 \vec{k_1} \, d^2 \vec{k_2}} = \sum_{r,s=q,g} \int_0^1 dx_1 \int_0^1 dx_2 \, f_r(x_1,\,\mu_F) f_s(x_2,\,\mu_F) \, \frac{d\hat{\sigma}_{r,s}(x_1 x_2 s,\,\mu_F)}{dy_1 \, dy_2 \, d^2 \vec{k_1} \, d^2 \vec{k_2}}$

II.1 Mueller-Navelet jets

$$\int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}}$$

- slight change of variable in the final state
- ◇ project onto the eigenfunctions of the LO BFKL kernel, i.e. transfer from the reggeized gluon momenta to the (n, v)-representation
- suitable definition of the azimuthal coefficients

 $dx_1 dx_2 d|\bar{k}$

Y

...useful definitions:

II.1 Mueller-Navelet jets

 p_1

$$\int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}}$$

- slight change of variable in the final state
- ◇ project onto the eigenfunctions of the LO BFKL kernel, i.e. transfer from the reggeized gluon momenta to the (n, v)-representation
- suitable definition of the azimuthal coefficients

$$\frac{d\sigma}{\vec{k_1}|d|\vec{k_2}|d\phi_1d\phi_2} = \frac{1}{(2\pi)^2} \left[\mathcal{C}_0 + \sum_{n=1}^{\infty} 2\cos(n\phi) \mathcal{C}_n \right]$$

with $\phi = \phi_1 - \phi_2 - \pi$
 $= \ln \frac{x_1 x_2 s}{|\vec{k_1}||\vec{k_2}|}, \quad Y_0 = \ln \frac{s_0}{|\vec{k_1}||\vec{k_2}|}$

...useful definitions:

II.1 Mueller-Navelet jets

Υ

$$\int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}}$$

Observables:

 ϕ -averaged cross section \mathcal{C}_0 , $\langle \cos \left[n \left(\phi_{J_1} - \phi_{J_2} - \pi \right) \right] \rangle \equiv \frac{\mathcal{C}_n}{\mathcal{C}_0}$, with n = 1, 2, 3

$$\frac{\cos\left[2\left(\phi_{1}-\phi_{2}-\pi\right)\right]}{\cos\left(\phi_{1}-\phi_{2}-\pi\right)} \equiv \frac{\mathcal{C}_{2}}{\mathcal{C}_{1}} \equiv R_{21}, \quad \frac{\left\langle\cos\left[3\left(\phi_{1}-\phi_{2}-\pi\right)\right]\right\rangle}{\left\langle\cos\left[2\left(\phi_{1}-\phi_{2}-\pi\right)\right]\right\rangle} \equiv \frac{\mathcal{C}_{3}}{\mathcal{C}_{2}} \equiv R_{3}$$

◊ Integrated coefficients:

 $C_{n} = \int_{y_{1,\min}}^{y_{1,\max}} dy_{1} \int_{y_{2,\min}}^{y_{2,\max}} dy_{2} \int_{k_{J_{1},\min}}^{\infty} dk_{J_{1}} \int_{k_{J_{2},\min}}^{\infty} dk_{J_{2}} \delta (y_{1} - y_{2} - Y) \mathcal{C}_{n} (y_{J_{1}}, y_{J_{2}}, k_{J_{1}}, k_{J_{2}})$

$$\frac{d\sigma}{\vec{k_1}|d|\vec{k_2}|d\phi_1d\phi_2} = \frac{1}{(2\pi)^2} \left[\mathcal{C}_0 + \sum_{n=1}^{\infty} 2\cos(n\phi) \mathcal{C}_n \right]$$

with $\phi = \phi_1 - \phi_2 - \pi$
 $= \ln \frac{x_1 x_2 s}{|\vec{k_1}||\vec{k_2}|}, \quad Y_0 = \ln \frac{s_0}{|\vec{k_1}||\vec{k_2}|}$

MN jets: Theory vs experiment @7TeV CMS

II.1 Mueller-Navelet jets

(figures in this slide; 7 TeV BFKL + sym.) [B. Ducloué, L. Szymanowski, S. Wallon (2014)] (similar analysis; 7 TeV BFKL + sym.) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2014)]

Y

MN jets: Hunting BFKL @7TeV CMS

II.1 Mueller-Navelet jets

Mueller-Navelet jets

- well separated in rapidity
- operation possibility to define *infrared-safe* observables and constrain PDFs.

[B. Ducloué, L. Szymanowski, S. Wallon (2014)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2014); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015, 2016)]

II.1 Mueller-Navelet jets

inclusive hadroproduction of two jets featuring high transverse momenta and

theory vs experiment (CMS @7 TeV with symmetric p_T -ranges, **only!**)

(13)

Mueller-Navelet jets

- inclusive hadroproduction of two well separated in rapidity
- operation of the possibility to define infrared-safe observables and constrain PDFs
- \diamond theory vs experiment (CMS @7 TeV with symmetric p_T -ranges, **only!**)

[B. Ducloué, L. Szymanowski, S. Wallon (2014)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2014); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015, 2016)]

"[...] the reasonable data-theory agreement shown by the NLL BFKL analytical calculations at large Δy , may be considered as indications that the kinematical domain of the present study lies in between the regions described by the DGLAP and BFKL approaches."

II.1 Mueller-Navelet jets

inclusive hadroproduction of two jets featuring high transverse momenta and

[CMS Collaboration (2016)]

Mueller-Navelet jets

- inclusive hadroproduction of two well separated in rapidity
- operation of the possibility to define infrared-safe observables and constrain PDFs
- theory vs experiment (CMS @7 TeV with symmetric p_T -ranges, only!)

[B. Ducloué, L. Szymanowski, S. Wallon (2014)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2014); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015, 2016)]

"[...] the reasonable data-theory agreement shown by the NLL BFKL analytical calculations at large Δy , may be considered as indications that the kinematical domain of the present study lies in between the regions described by the DGLAP and BFKL approaches."

What's next?

 \diamond BFKL vs fixed-order DGLAP adopting **asymmetric** p_T -ranges (next slide)

o need for more exclusive final states as well as more sensitive observables

inclusive hadroproduction of two jets featuring high transverse momenta and

[CMS Collaboration (2016)]

- \diamond NLA BFKL expressions for the observables truncated to $\mathcal{O}(\alpha_s^3)$

II.1 Mueller-Navelet jets

• first analysis: MN jets with partial asymmetric cuts for jet transv. momenta

(CMS-jet, 7 TeV) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015)]

- \diamond NLA BFKL expressions for the observables truncated to $\mathcal{O}(\alpha_s^3)$

Why asymmetric cuts?

♦ enhance effects of additional hard gluons → BFKL effects

II.1 Mueller-Navelet jets

- 1

• first analysis: MN jets with partial asymmetric cuts for jet transv. momenta (CMS-jet, 7 TeV) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015)]

- suppress Born contribution to φ -averaged cross section C_0 (back-to-back)
 - avoid instabilities observed in NLO fixed-order calculations
 - [J.R. Andersen, V. Del Duca, S. Frixione, C.R. Schmidt, W.J. Stirling (2001)] [M. Fontannaz, J.P. Guillet, G. Heinrich (2001)]

- violation of energy-momentum in NLA strongly suppressed respect to LLA [B. Ducloué, L. Szymanowski, S. Wallon (2014)]
- 3 NLA BFKL reactions: MN jets, hadron-jet, di-hadron with disjoint k-windows

Looking for new observables

- BFKL feature: factorization between transverse and longitudinal (rapidities) degrees of freedom
- Usual "growth with energy" signal mainly probes the longitudinal degrees of freedom
- Mueller–Navelet correlation momenta mainly probe one of the transverse components, the azimuthal angles
- ! We would like to study observables for which the p_T (any p_T along the BFKL ladder) enters the game...
 - ...to probe not only the general properties of the BFKL ladder, but also "to peek into the interior"...
 - ...by studying azimuthal decorrelations where the p_T of extra particles introduces a new dependence...

Looking for new observables

- BFKL feature: factorization between transverse and longitudinal (rapidities) degrees of freedom
- Usual "growth with energy" signal mainly probes the longitudinal degrees of freedom
- Mueller–Navelet correlation momenta mainly probe one of the transverse components, the azimuthal angles
- ! We would like to study observables for which the p_T (any p_T along the BFKL ladder) enters the game...
 - ...to probe not only the general properties of the BFKL ladder, but also "to peek into the interior"...
 - ...by studying azimuthal decorrelations where the p_T of extra particles introduces a new dependence...

...multi-jet production!

Università della Calabria & INFN-Cosenza

Francesco Giovanni Celiberto

December 21st, 2017

27 / 52

Three- and four-jet production

Three-jets: generalized azimuthal correlations

Prescription: integrate over all angles after using the projections on the two azimuthal angle differences indicated below...to define:

$$\begin{split} &\int_{0}^{2\pi} d\theta_{A} \int_{0}^{2\pi} d\theta_{B} \int_{0}^{2\pi} d\theta_{J} \cos\left(M\left(\theta_{A} - \theta_{J} - \pi\right)\right) \cos\left(N\left(\theta_{J} - \theta_{B} - \pi\right)\right) \frac{d^{3} \hat{\sigma}^{3-\text{jet}}}{dk_{J} d\theta_{J} dy_{J}} \\ &= \bar{\alpha}_{s} \sum_{L=0}^{N} \binom{N}{L} \left(k_{J}^{2}\right)^{\frac{L-1}{2}} \int_{0}^{\infty} dp^{2} \left(p^{2}\right)^{\frac{N-L}{2}} \int_{0}^{2\pi} d\theta \ \frac{(-1)^{M+N} \cos\left(M\theta\right) \cos\left(\left(N - L\right)\theta\right)}{\sqrt{\left(p^{2} + k_{J}^{2} + 2\sqrt{p^{2}k_{J}^{2}} \cos\theta\right)^{N}}} \\ &\times \Phi_{M} \left(k_{A}^{2}, p^{2}, Y_{A} - y_{J}\right) \Phi_{N} \left(p^{2} + k_{J}^{2} + 2\sqrt{p^{2}k_{J}^{2}} \cos\theta, k_{B}^{2}, y_{J} - Y_{B}\right) \end{split}$$

$$\begin{split} & \sum_{k=0}^{2\pi} d\theta_A \int_0^{2\pi} d\theta_B \int_0^{2\pi} d\theta_J \cos\left(M\left(\theta_A - \theta_J - \pi\right)\right) \cos\left(N\left(\theta_J - \theta_B - \pi\right)\right) \frac{d^3 \hat{\sigma}^{3-\text{jet}}}{dk_J d\theta_J dy_J} \\ &= \bar{\alpha}_s \sum_{L=0}^N \binom{N}{L} \left(k_J^2\right)^{\frac{L-1}{2}} \int_0^\infty dp^2 \left(p^2\right)^{\frac{N-L}{2}} \int_0^{2\pi} d\theta \, \frac{(-1)^{M+N} \cos\left(M\theta\right) \cos\left(\left(N-L\right)\theta\right)}{\sqrt{\left(p^2 + k_J^2 + 2\sqrt{p^2 k_J^2} \cos\theta\right)^N}} \\ &\times \Phi_M \left(k_A^2, p^2, Y_A - y_J\right) \Phi_N \left(p^2 + k_J^2 + 2\sqrt{p^2 k_J^2} \cos\theta, k_B^2, y_J - Y_B\right) \end{split}$$

Main observables: generalized azimuthal correlation momenta

$$\mathcal{R}_{PQ}^{MN} = \frac{\mathcal{C}_{MN}}{\mathcal{C}_{PR}} = \frac{\left\langle \cos(M(\theta_A - \theta_J - \pi))\cos(N(\theta_J - \theta_B - \pi))\right\rangle}{\left\langle \cos(P(\theta_A - \theta_J - \pi))\cos(Q(\theta_J - \theta_B - \pi))\right\rangle}$$

Remove the contribution from the zero conformal spin \xrightarrow{to} drastically reduce the dependence on collinear configurations study \mathcal{R}_{PO}^{MN} with integer M, N, P, Q > 0

Francesco Giovanni Celiberto

Università della Calabria & INFN-Cosenza

December 21st, 2017

31/52

Light-flavored hadrons

From jets to hadrons

Di-hadron and hadron-jet correlations

Inclusive di-hadron production

[D.Yu. Ivanov, A. Papa (2012)] (NLO forward-hadron impact factor) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016, 2017)]

Inclusive hadron-jet production

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2018)] [F.G.C. (in preparation)]

June 17th, 2020

From jets to hadrons

Di-hadron and hadron-jet correlations

Inclusive di-hadron production

[D.Yu. Ivanov, A. Papa (2012)] (NLO forward-hadron impact factor) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016, 2017)]

- \diamond NLO impact factors known \Rightarrow full NLA BFKL analysis feasible
- ♦ genuine asymmetric cuts in transverse momenta (hadron-jet)

Inclusive hadron-jet production

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2018)] [F.G.C. (in preparation)]

PDFs + FFs at work (both), hadrons at smaller rapidities than jets (di-hadron)

Hadron + jet production within HyF

- Inclusive hadron + jet hadroproduction: high p_T and large rapidity separation, ΔY
- Moderate x (collinear PDFs), but t-channel p_T (BFKL resummation) \rightarrow hybrid factorization
 - $\frac{d\sigma}{dy_H dy_J d^2 \vec{k}_H d^2 \vec{k}_J} = \sum_{r,s=q,g} \int_{0}^{1} \int_{0}^{1} dx_1 dx_2 f_r(x_1, \mu_F) f_s(x_2, \mu_F) \frac{d\hat{\sigma}_{r,s}(x_1 x_2 s, \mu_F)}{dy_H dy_J d^2 \vec{k}_J d^2 \vec{k}_J}$

Hadron + jet production within HyF

- Inclusive hadron + jet hadroproduction: high p_T and large rapidity separation, ΔY
- Moderate x (collinear PDFs), but t-channel p_T (BFKL resummation) \rightarrow hybrid factorization

$$c_{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{H} dy_{J} d^{2}\vec{k}_{J} d^{2}\vec{k}_{J}}$$
hadron verter

$$\left[off-shell amplited \right]$$

$$\frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu)}{dy_{H} dy_{J} d^{2}\vec{k}_{H} d^{2}\vec{k}_{J}} = \frac{1}{(2\pi)^{2}}$$

$$\int \frac{d^{2}\vec{q}_{1}}{\vec{q}_{1}^{2}} \mathcal{V}_{H}^{(r)}(\vec{q}_{1}, s_{0}, x_{1}; \vec{k}_{H}, x_{H}) D_{r}^{H}\left(\frac{x_{H}}{x_{1}}, \mu_{F}\right)$$

$$\times \int_{\delta-i\infty}^{\delta+i\infty} \frac{d\omega}{2\pi i} \left(\frac{x_{1}x_{2}s}{s_{0}}\right)^{\omega} \mathcal{G}_{\omega}(\vec{q}_{1}, \vec{q}_{2})$$

$$\times \int \frac{d^{2}\vec{q}_{2}}{\vec{q}_{2}^{2}} \mathcal{V}_{J}^{(s)}(\vec{q}_{2}, s_{0}, x_{2}; \vec{k}_{J}, x_{J})$$
BFKL Green's funct

Forward-hadron impact factor

• take the impact factors for **colliding partons**

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000); M. Ciafaloni and G. Rodrigo (2000)]

Forward-hadron impact factor

• take the impact factors for **colliding partons**

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000); M. Ciafaloni and G. Rodrigo (2000)]

quark vertex

 "open" one of the integrations over the phase space of the intermediate state to allow one parton to generate the jet

 $\mathcal{V}_{H/J}^{(q)}$ (quark hadron/jet vertex)

II.2 Light hadrons

Forward-hadron impact factor

take the impact factors for **colliding partons**

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000); M. Ciafaloni and G. Rodrigo (2000)]

quark vertex

"open" one of the integrations over the phase space of the intermediate state to allow one parton to generate the jet

II.2 Light hadrons

$$\mathcal{V}_{H}^{(r)} \otimes D_{r}^{H} + f_{g} \otimes \mathcal{V}_{H}^{(g)} \otimes D_{g}^{H}$$

 $\mathcal{V}_{J}^{(s)} + f_{g} \otimes \mathcal{V}_{J}^{(g)}$

Hadron + jet: Observables & kinematics

Observables:

Azimuthal distribution

$$\frac{1}{\sigma}\frac{d\sigma}{d\varphi} = \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)\left(\cos(n\varphi)\right)\right\} \equiv \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)R_{n0}\right\}$$

 φ -averaged cross section, \mathcal{C}_0 ; $\langle \cos(n\varphi) \rangle \equiv \frac{\mathcal{C}_n}{\mathcal{C}_0} \equiv R_{n0}$, with n = 1, 2, 3; $\langle \cos(2\varphi) \rangle / \langle \cos(\varphi) \rangle \equiv \mathcal{C}_2 / \mathcal{C}_1 \equiv R_{21}, \langle \cos(3\varphi) \rangle / \langle \cos(2\varphi) \rangle \equiv \mathcal{C}_3 / \mathcal{C}_2 \equiv R_{32};$

Hadron + jet: Observables & kinematics

Observables:

II.2 Light hadrons

Azimuthal distribution

$$\frac{1}{\sigma}\frac{d\sigma}{d\varphi} = \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)\left(\cos(n\varphi)\right)\right\} \equiv \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)R_{n0}\right\}$$

• Kinematic settings (CMS- and CASTOR-jet detection):

 \diamond 3 NLA BFKL reactions at $\sqrt{s} = 13$ TeV: MN jets, hadron-jet, di-hadron ♦ $|y_H| \leq 2.4$; $|y_I^{(CMS)}| \leq 4.7$; $-6.6 \leq y_I^{(CST)} \leq -5.2$ ♦ $k_H \ge 5,10 \text{ GeV}; k_I^{(\text{CMS})} \ge 20,35,45 \text{ GeV}; k_I^{(\text{CST})} \ge 10 \text{ GeV}$

- \diamond 5 final-state configurations with **disjoint** k-windows

 φ -averaged cross section, \mathcal{C}_0 ; $\langle \cos(n\varphi) \rangle \equiv \frac{\mathcal{C}_n}{\mathcal{C}_0} \equiv R_{n0}$, with n = 1, 2, 3; $\langle \cos(2\varphi) \rangle / \langle \cos(\varphi) \rangle \equiv \mathcal{C}_2 / \mathcal{C}_1 \equiv R_{21}, \langle \cos(3\varphi) \rangle / \langle \cos(2\varphi) \rangle \equiv \mathcal{C}_3 / \mathcal{C}_2 \equiv R_{32};$

Hadron + jet: Observables & kinematics

Observables:

Azimuthal distribution

$$\frac{1}{\sigma}\frac{d\sigma}{d\varphi} = \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)\left(\cos(n\varphi)\right)\right\} \equiv \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos(n\varphi)R_{n0}\right\}$$

• Kinematic settings (CMS- and CASTOR-jet detection):

 \diamond 3 NLA BFKL reactions at $\sqrt{s} = 13$ TeV: MN jets, hadron-jet, di-hadron ♦ $|y_H| \leq 2.4$; $|y_I^{(CMS)}| \leq 4.7$; $-6.6 \leq y_I^{(CST)} \leq -5.2$ ♦ $k_H \ge 5,10 \text{ GeV}; k_I^{(\text{CMS})} \ge 20,35,45 \text{ GeV}; k_I^{(\text{CST})} \ge 10 \text{ GeV}$

- \diamond 5 final-state configurations with **disjoint** k-windows

Numerical specifics:

II.2 Light hadrons

- ◇ JETHAD (HEP@WORK, FORTRAN08/PYTHON3)
- ◇ PDF4LHC15 ③ (AKK08, DSS07, HKNS07, NNFF1.0)

 φ -averaged cross section, \mathcal{C}_0 ; $\langle \cos(n\varphi) \rangle \equiv \frac{\mathcal{C}_n}{\mathcal{C}_0} \equiv R_{n0}$, with n = 1, 2, 3; $\langle \cos(2\varphi) \rangle / \langle \cos(\varphi) \rangle \equiv \mathcal{C}_2 / \mathcal{C}_1 \equiv R_{21}, \langle \cos(3\varphi) \rangle / \langle \cos(2\varphi) \rangle \equiv \mathcal{C}_3 / \mathcal{C}_2 \equiv R_{32};$

Jet and hadrons @CMS+CASTOR

Forward + backward CMS detections

II.2 Light hadrons

 $|y_{jet}| < 4.7$

CMS barrel + endcaps

 $|y_{\text{hadron}}| < 2.4$

CMS barrel

Jet and hadrons @CMS+CASTOR

Forward CMS + ultra-backward CASTOR detections

 $|y_{jet}| < 4.7$

CMS barrel + endcaps

 $|y_{\text{hadron}}| < 2.4$

CMS barrel

 $-6.6 < |y_{iet}| < -5.2$ CASTOR $|y_{\text{hadron}}| < 2.4$

CMS barrel

(hadron + jet) 🔗 [F. G. C. et al., Eur. Phys. J. C 78 (2018) 9, 772] (Hunting BFKL) Ø [F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

MN jets, di-hadron and hadron + jet@13 TeV LHC

II.2 Light hadrons

[F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

MN jets, di-hadron and hadron + jet@13 TeV LHC

II.2 Light hadrons

[F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

Hadron + jet: Azimuthal distributions @13 TeV LHC

NLL/NLO

II.2 Light hadrons

F. G. C., Eur. Phys. J. C 81 (2021) 8, 691

(26)

NLL instabilities

Hadron + jet: Azimuthal distributions @13 TeV LHC

NLA BFKL corrections to cross section with opposite sign with respect to the leading order (LO) result and large in absolute value...

- ♦ …call for some optimization procedure…
- ...choose scales to mimic the most relevant subleading terms

II.3 NLL instabilities

Hadron + jet: Azimuthal distributions @13 TeV LHC

leading order (LO) result and large in absolute value...

- ...call for some optimization procedure...
- …choose scales to mimic the most relevant subleading terms
 …

BLM [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]

preserve the conformal invariance of an observable... \checkmark \checkmark ...by making vanish its β_0 -dependent part

- "Exact" BLM: NLO IFs + NLO Kernel β_0 -dependent factors suppress
- Partial (approximated) BLM:

II.3 NLL instabilities

a)
$$\left(\mu_{R}^{BLM}\right)^{2} = k_{1}k_{2} \exp\left[2\left(1+\frac{2}{3}I\right)-f\left(\nu\right)-\frac{5}{3}\right] \leftarrow \text{NLO IFs } \beta_{0}$$

b) $\left(\mu_{R}^{BLM}\right)^{2} = k_{1}k_{2} \exp\left[2\left(1+\frac{2}{3}I\right)-2f\left(\nu\right)-\frac{5}{3}+\frac{1}{2}\chi\left(\nu,n\right)\right] \leftarrow \text{NLO Kernel } \beta_{0}$
with $i\frac{d}{d\nu}\ln\left(\frac{c_{1}}{c_{2}}\right) = 2\left[f(\nu)-\ln\left(\sqrt{k_{1}^{2}k_{2}^{2}}\right)\right]$

NLA BFKL corrections to cross section with opposite sign with respect to the

[F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2015)]

Hadron + jet: BLM scales

[F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

II.3 NLL instabilities

Natural scales

II.3 NLL instabilities

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

BLM scales

Natural scales

II.3 NLL instabilities

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

BLM scales

Natural scales

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

II.3 NLL instabilities

BLM scales

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

II.3 NLL instabilities

II.3 NLL instabilities

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

[B. Ducloué et al., Phys. Rev. Lett. 112 (2014) 082003
]

II.3 NLL instabilities

[F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

Lecture II Checkpoint

Checkpoint of Lecture II

37

<u>Mueller-Navelet jets</u> \Rightarrow First comparison with LHC data

Checkpoint of Lecture II

school in QCD D24

37

Mueller-Navelet jets \Rightarrow First comparison with LHC data

Hadron + jet \Rightarrow Hunt for BFKL signals & BFKL vs DGLAP

Checkpoint of Lecture II

(37)

- Mueller-Navelet jets \Rightarrow First comparison with LHC data

Hadron + jet \Rightarrow Hunt for BFKL signals & BFKL vs DGLAP

Checkpoint of Lecture II

NLL resummation instabilities \Rightarrow Precision studies hampered

(37)

- Mueller-Navelet jets \Rightarrow First comparison with LHC data

Hadron + jet \Rightarrow Hunt for BFKL signals & BFKL vs DGLAP

Checkpoint of Lecture II

NLL resummation instabilities \Rightarrow Precision studies hampered

Need for processes featuring a natural stabilization pattern !

(37)

MN jets: Hunting BFKL @7TeV CMS

(left) 🔗 [F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

(right) 🔗 [F. G. C., A. Papa, Phys. Rev. D 106 (2022) 11, 114004]

MN jets: Azimuthal coefficients

$$\begin{split} \mathfrak{C}_{n} &= \int_{-\infty}^{+\infty} d\nu \, \left(\frac{x_{1}x_{2}s}{s_{0}} \right)^{\bar{\alpha}_{s}(\mu_{R}) \left\{ \chi(n,\nu) + \bar{\alpha}_{s}(\mu_{R}) \, \mathcal{K}^{(1)}(n,\nu) \right\}} \\ &\times \frac{e^{Y}}{s} \, \alpha_{s}^{2}(\mu_{R}) \, c_{1}(n,\nu,|\vec{k}_{1}|,x_{1}) \left[c_{2}(n,\nu,|\vec{k}_{2}|,x_{2}) \right]^{*} \\ &\times \left\{ 1 + \alpha_{s}(\mu_{R}) \left[\frac{c_{1}^{(1)}(n,\nu,|\vec{k}_{1}|,x_{1})}{c_{1}(n,\nu,|\vec{k}_{1}|,x_{1})} + \left[\frac{c_{2}^{(1)}(n,\nu,|\vec{k}_{2}|,x_{2})}{c_{2}(n,\nu,|\vec{k}_{2}|,x_{2})} \right]^{*} \right] \\ &+ \bar{\alpha}_{s}^{2}(\mu_{R}) \ln \left(\frac{x_{1}x_{2}s}{s_{0}} \right) \frac{\beta_{0}}{4N_{c}} \, \chi(n,\nu) \, f(\nu) \right\} \end{split}$$

where

 $\chi(n, \mathbf{v}) = 2\psi(1) - \psi$

 $\mathcal{K}^{(1)}(n,\mathbf{v}) = \bar{\chi}(n,\mathbf{v}) + \frac{\beta_0}{8N_c}\chi$

$$\left(\frac{n}{2} + \frac{1}{2} + i\nu\right) - \psi\left(\frac{n}{2} + \frac{1}{2} - i\nu\right)$$
$$\chi(n,\nu) \left[-\chi(n,\nu) + \frac{10}{3} + 2\ln\left(\frac{\mu_R^2}{\sqrt{k_1^2 k_2^2}}\right)\right]$$

LIGHT-FLAVORED HADRONS

LO forward-jet and -hadron impact factors

LO forward hadron impact factor in the (n, v)-representation

 $c_H(n, \mathbf{v})$

$$c_H(n, \mathbf{v}, |\vec{k}_H|, x_H) = 2\sqrt{\frac{C_F}{C_A}} (\vec{k}_H^2)^{i\nu - 1/2} \int_{x_H}^1 \frac{dx}{x} \left(\frac{x}{x_H}\right)^{2i\nu - 1}$$
$$\times \left[\frac{C_A}{C_F} f_g(x) D_g^h\left(\frac{x_H}{x}\right) + \sum_{r=q,\bar{q}} f_r(x) D_r^h\left(\frac{x_H}{x}\right) \right]$$

• LO forward jet impact factor in the (n, v)-representation

$$c_{J}(n, \mathbf{v}, |\vec{k}_{J}|, x_{J}) = 2\sqrt{\frac{C_{F}}{C_{A}}}(\vec{k}_{J}^{2})^{i\nu-1/2} \left(\frac{C_{A}}{C_{F}}f_{g}(x_{J}) + \sum_{s=q,\bar{q}}f_{s}(x_{J})\right)$$

• $f(\mathbf{v})$ function

$$i\frac{d}{d\nu}\ln\left(\frac{c_H}{[c_J]^*}\right)$$

$$= 2 \left[f(\mathbf{v}) - \ln \left(\sqrt{\vec{k}_H^2 \vec{k}_J^2} \right) \right]$$

The BFKL BLM azimuthal coefficients

$$C_{n}^{\text{NLA}} = \int_{y_{1}^{\min}}^{y_{1}^{\max}} dy_{1} \int_{y_{2}^{\min}}^{y_{2}^{\max}} dy_{2} \int_{k_{1}^{\min}}^{\infty} dk_{1} \int_{k_{2}^{\min}}^{\infty} dk_{2} \int_{-\infty}^{\infty} d\nu \frac{e^{Y}}{s} \left(\alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \right)^{2} \\ \times e^{Y \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \left[\chi(n,\nu) + \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \left(\bar{\chi}(n,\nu) + \frac{T^{\text{conf}}}{3} \chi(n,\nu) \right) \right]_{c_{1}(n,\nu)} [c_{2}(n,\nu)]^{*}} \\ \times \left\{ 1 + \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \left[\frac{\hat{c}_{1}^{(1)}(n,\nu)}{c_{1}(n,\nu)} + \left[\frac{\hat{c}_{2}^{(1)}(n,\nu)}{c_{2}(n,\nu)} \right]^{*} + \frac{2T^{\text{conf}}}{3} \right] \right\},$$

with the μ_R^{BLM} scale chosen as the solution of the following integral equation...

$$C_{n}^{\beta} \propto \int_{y_{1}^{\min}}^{y_{1}^{\max}} dy_{1} \int_{y_{2}^{\min}}^{y_{2}^{\max}} dy_{2} \int_{k_{1}^{\min}}^{\infty} dk_{1} \int_{k_{2}^{\min}}^{\infty} dk_{2} \int_{-\infty}^{\infty} d\nu \, e^{\gamma \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}})\chi(n,\nu)} \left(\alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}})\right)^{3}$$

$$c_{1}(n,\nu) [c_{2}(n,\nu)]^{*} \frac{\beta_{0}}{2N_{c}} \left[\frac{5}{3} + \ln \frac{(\mu_{R}^{\text{BLM}})^{2}}{|\vec{k}_{1}||\vec{k}_{2}|} + f(\nu) - 2\left(1 + \frac{2}{3}I\right)\right]$$

$$+ \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \gamma \frac{\chi(n,\nu)}{2} \left(-\frac{\chi(n,\nu)}{2} + \frac{5}{3} + \ln \frac{(\mu_{R}^{\text{BLM}})^{2}}{|\vec{k}_{1}||\vec{k}_{2}|} + f(\nu) - 2\left(1 + \frac{2}{3}I\right)\right) = 0$$

The HE-NLO azimuthal coefficients

$$C_{n}^{\text{DGLAP}} = \int_{y_{1}^{\min}}^{y_{1}^{\max}} dy_{1} \int_{y_{2}^{\min}}^{y_{2}^{\max}} dy_{2} \int_{k_{1}^{\min}}^{\infty} dk_{1} \int_{k_{2}^{\min}}^{\infty} dk_{2} \int_{-\infty}^{\infty} d\nu \frac{e^{Y}}{s} \left(\alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \right)^{2} \\ \times c_{1}(n,\nu) [c_{2}(n,\nu)]^{*} \\ \times \left\{ 1 + \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \left[Y \frac{C_{A}}{\pi} \chi(n,\nu) + \frac{\hat{c}_{1}^{(1)}(n,\nu)}{c_{1}(n,\nu)} + \left[\frac{\hat{c}_{2}^{(1)}(n,\nu)}{c_{2}(n,\nu)} \right]^{*} + \frac{2T^{\text{conf}}}{3} \right] \right\} ,$$

 \diamond NLA BFKL expressions for the observables truncated to $O(\alpha_s^3)$
NLL INSTABILITIES

Hadron + jet: BLM scales

[F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

MN jets: NLL resummation instabilities

At natural scales: NLL/LL ratio large, no agreement with data, unphysical values

Strong manifestation of higher-order instabilities via scale variation (;!)

BLM scales, theory vs experiment: CMS @7TeV with symmetric pt-ranges

MN jets: NLL resummation instabilities

At natural scales: NLL/LL ratio large, no agreement with data, unphysical values

Strong manifestation of higher-order instabilities via scale variation (1)

BLM scales, theory vs experiment: CMS @7TeV with symmetric pt-ranges

[CMS Collaboration, JHEP 08 (2016) 139] [B. Ducloué et al., Phys. Rev. Lett. 112 (2014) 082003] [F. Caporale et al., Eur. Phys. J. C 74 (2014) 10, 3084]

(left figure) Ø [F. G. C., A. Papa (2022)] (right figure) Ø [F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

MN jets: NLL resummation instabilities

 $\mu_R^{\text{BLM}} \gg \mu_R^{\text{nat.}} \Rightarrow d\sigma^{\text{BLM}}/d\sigma^{\text{nat.}} \sim 10^{-(1\div 2)}$ ΙΛ

Unsuccessful scale optimization \rightarrow processes featuring <u>natural stability</u> (¿?)

Strong manifestation of higher-order instabilities via scale variation (;!)

At natural scales: NLL/LL ratio large, no agreement with data, unphysical values

BLM scales, theory vs experiment: CMS @7TeV with symmetric pt-ranges

[CMS Collaboration, JHEP 08 (2016) 139] [B. Ducloué et al., Phys. Rev. Lett. 112 (2014) 082003] [F. Caporale et al., Eur. Phys. J. C 74 (2014) 10, 3084]

(left figure) Ø [F. G. C., A. Papa (2022)] (right figure) Ø [F. G. C., Eur. Phys. J. C 81 (2021) 8, 691]

