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In the QCD era
● Let us leave the old Regge theory for now, we keep in our 

discussion though terms like “Regge Limit”, “trajectory”, 
“power-like rise with energy”


● We believe that QCD is the fundamental theory for hadronic 
collisions


● What does QCD have to say about the rise of the scattering 
amplitudes at high energies


● Does the Pomeron fit within pQCD or is it of non-perturbative 
nature?


● The answers (or attempts to answers) to the above started in 
the 70's 
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In the early days of QCD
● ￼  Regge trajectory

● The Pomeron couples to quarks as a photon (?)

● Donnachie and Landshoff (1979, 1984) fitted 

￼  to the available pp data and 

obtained ￼ 

● Soft Pomeron

● Low and Nussinov (1975, 1976) proposed to picture Pomeron 


as a two-gluon exchange

A(s, t) ∼ β(t)sα(t)

dσel

dt
=

g4 [3F1(t)]4

4π sin2 ( παℙ(t)
2 ) ( s

s0 )
2αℙ(t)−2

αℙ(0) = 1.08, α′￼ℙ = 0.25GeV−2, g4 = 3.21GeV−2



Donnachie & Landshoff (2013)
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The QCD perturbative Pomeron



The Balitsky-Fadin-Kuraev-Lipatov 
(BFKL) equation

1464 citations

4056 citations
 3670 citations

This big adventure started almost 50 years ago
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What we will cover and what not 

● Reggeization of the 
gluon


● LO BFKL equation

● Intro to methodology

● NLO BFKL

● Impact factors

● Issues/problems

● Phenomenology

● CCFM

● BK

● CGC

● Saturation

● … and many more

The aim is to show you that this is “good 
physics”. If still things are not so clear, please 
do not despair, many great people found it 
hard in the beginning. 
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BFKL how to, step 0

Start from the simplest q q scattering, 
with momenta  p1 and p2


Remember that you will have to see 
an power-like rise to cross sections


You will be hunting logarithms, in 
particular, ￼ 


The last two points are 
interconnected as we will soon see

ln s
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Some considerations before

resummation

• Q: What is the most relevant scale in high energy scattering?


• A: The center-of-mass energy squared s


• Q: In which functional form does s appear in the Feynman diagrams?


• A:         If m=n, , leading logarithmic approximation LLA


• Q: Can one isolate those Feynman diagrams that come with a numerically important 
[￼ ] contribution?


• A: It depends (for this lecture the answer is yes)


• Q: Can one resum all these diagrams with important αsm ln(s)n contributions to all 
orders in αs?


• A: It depends (for this lecture the answer is yes)

αm
s (ln s)n αn

s (ln s)n

αm
s (ln s)n ∼ 1



Feynman rules for QCD
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BFKL how to, still step 0

Assume that whatever is exchanged 
to the t-channel has mainly 
transverse components and also that 
it is much smaller than s.

Actually the kinematical limit we are 
working in is  s >> |t|,  u~ -s


Then the quark-gluon vertex can be 
written as
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Sudakov parametrization

Light-cone 
components
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BFKL how to, step 1
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BFKL how to, step 2

Dispersion relations
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BFKL how to, still step 2

after setting:

The two

one-loop

amplitudes

Remember that we said we are hunting logs in s
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BFKL how to, step 2 final
Putting together the two amplitudes for the one-loop, we obtain:

These 
diagrams

come in the 
next order 
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BFKL how to, step 3

Stay on the virtual contributions, real contributions will come afterward ￼17



BFKL how to, … pause...

An ansatz seems natural:

The reggeization of the gluon; Bootstrap equation
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BFKL how to, next step, real 
corrections

Lipatov's effective vertex ￼19



BFKL how to, next step, real 
corrections
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Now, time to iterate, assume the t-
channel gluons to be reggeized gluons, 
use the conditions:


The (n+2)-body phase will now be 
much more complicated

Almost there... Strong ordering in rapidity
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Ladder 

diagrams

Remember that we were 
calculating the imaginary part of 
the amplitude to the right. 


This type of diagrams are called 
ladder diagrams
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Ladder 

diagrams



Almost there... but before we have to 
do something with the phase space ...

The (n+2)-body 
phase space 

After integrating over βi we obtain:
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Mellin transform

(1)

(2)

(3)

(4)
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Mellin transform

Inverse Mellin transform

￼  is the convolution of n functions ￼f(s) gi

Mellin transform of  ￼ :f(s)



Mellin and inverse Mellin transform

Remember also that to unfold the nested integration we took a Mellin transform
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Mellin transformed amplitude
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Mellin transformed amplitude
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Mellin transformed amplitude
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Mellin transformed amplitude
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Each subsequent term in the series 

can be written in terms of the previous 

term by introducing an additional 

integration over ￼  and multiplying by

the kernel ￼

k
K(ki, ki+1)



Mellin transformed amplitude

￼31

BFKL equation



Let us try to understand the BFKL 
equation

Let us define the following:

Then we will have the following integral equation in which we 
encode the behaviour of ￼ :f1(ω, q2)

The subscript ￼  in ￼  will be from now on 1R fR
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Let us try to understand the BFKL 
equation
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Let us try to understand the BFKL 
equation

Contraction of Lipatov's 
effective vertices                 ￼34



Again, time to iterate, set the t-channel 
gluons to reggeized gluons, use the 
conditions:


and after the  Mellin transform to unfold 
the nested integrations over phase 
space, we finally get:  

Finally the BFKL equation Strong ordering in rapidity

￼35



The BFKL equation for zero 
momentum transfer

We can go back to s-space:
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A hadronic elastic amplitude

Impact factors... ?
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Let us make a summary here 
● We have shown how to derive the BFKL equation at LO

● We find that the exchange of ladder-diagrams leads to an 

exponential rise for the total cross section

● The resummation of all these ladders gives an intercept ~ 

0.5, perturbative Pomeron

● What is the connection between 'soft' and 'hard' Pomeron?

● Old ideas from Regge theory find accommodation -not in 

an always clear way- in QCD
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The BFKL equation, again
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To complete the story...

Suppose now that we know

The we take an inverse Mellin 
transform to go back to s-space

To recover the imaginary part of the ladder diagrams all we need to do is:
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The BFKL equation for zero 
momentum transfer, q=0

Or symbolically:

where
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SOLVING THE BFKL EQUATION
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Solution for zero momentum transfer

Let us write symbolically:

By solving the equation we 
mean finding 
eigenfunctions such that:

The eigenfunction obey the 
completeness relation:

Then the solution to the first 
equation will be:

α denotes a set of indices that can be discrete or continuous and the 
summation symbol can hide an integration ￼43



Solution for zero momentum transfer

Let us write symbolically:

By solving the equation we 
mean finding 
eigenfunctions such that:

Actually, if we use polar coordinates


the eigenfunctions are:


obeying:


whereas the eigenvalues are: 
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Solution for zero momentum transfer

The solution will then be:

Here, n is also called conformal spin, it is connected to the angular 
information encoded in the gluon Green's function ￼ .F(ω, k, k′￼)
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Solution for zero momentum transfer
Hands on... Let us use Mathematica to plot things and draw conclusions
omega[n_, v_] := Module[{asBar = 1/5},  
   Return[2 asBar (PolyGamma[0, 1] - 

     Re[PolyGamma[(Abs[n] + 1)/2 + I v]])]];

Plot[{omega[0, ν], omega[1, ν], omega[2, ν],

  omega[3, ν], omega[4, ν]}, {ν, 0, 3}]
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Solution for zero momentum transfer

Retain only the n=0 term, this 
from the analysis before

Expanding around 
zero where we have 
the maximum gives: ￼47



Solution for zero momentum transfer

Set:

Take the inverse Mellin transform

Pomeron solution 
of the BFKL 
equation
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Solution for zero momentum transfer

QCD Pomeron intercept way too large in comparison to the soft Pomeron intercept 
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Solution for zero momentum transfer

omega[n_, v_] := Module[{asBar = 1/5},  
   Return[2 asBar (PolyGamma[0, 1] - 

     Re[PolyGamma[(Abs[n] + 1)/2 + I v]])]];

analytic[n_, Y_, ka_, kb_, angle_] := 

NIntegrate[Exp[I*n*angle]/(2Pi^2)/ka/kb*2*Exp[omega[n,v]Y]* 

Cos[2 Log[(ka/kb)] v], {v, 0, Infinity}, WorkingPrecision -> 20];

Now you can calculate the LO gluon Green's function for a given rapidity Y, 
conformal spin n, and certain momenta of the reggeized gluons. 

Again in Mathematica:

Note: Many times, in the 
literature, the leading 
eigenvalue is denoted as

Χ0. It is also called 
sometimes as the LO BFKL 
kernel!

￼50



The gluon Green's function

GGF
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Unintegrated gluon distributions

Evolution eq. in 
rapidity

Unintegrated gluon distribution: 
the probability to find a gluon with 
longitudinal momentum fraction x 
and transverse momentum k

DIS
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NLO BFKL
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Regge ansatz
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A hadronic elastic amplitude

Impact factors... ?
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Impact factors

Impact factors are effective couplings of the BFKL gluon 
Green's function to the colliding projectiles


They are process dependent objects


One needs to calculate them at a certain order of the 
perturbative expansion, preferably the same one as that of 

the BFKL gluon Green's function.


It is not an easy task to calculate impact factors to NLO.  
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Impact factors

Taken from a talk by B. Murdaca
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Bibliography II (indicative)
● Forshaw & Ross, “Quantum Chromodynamics and the Pomeron”

● Barone & Predazzi, High Energy Particle Diffraction

● Ioffe, Fadin & Lipatov, “Quantum Chromodynamics: Perturbative and 

Nonperturbative Aspects”

● Kovchegov & Levin, “Quantum Chromodynamics at High Energy”

● Many many review articles...
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