Forward Physics: An Experimental Perspective

Prof Paul Newman (University of Birmingham)

H1, ATLAS, LHeC, ePIC experiments

(please call me Paul) Email: p.r.newman@bham.ac.uk

1 **Midsummer School in QCD Saariselkä, Finland June 2024 Lecture 2: Soft Forward Physics Diffraction in proton-proton Collisions**

Lecture 2

- Minimum Bias LHC Data \rightarrow Features of Non-Diffractive Data
- Experimental methods for processes with intact protons
- Elastic scattering at the LHC
- Single Diffractive dissociation at the LHC

LHC: Exploring the ultra-rare at the Energy Frontier

But what usually happens when hadrons collide at large √**?**

But what usually happens when hadrons collide at large √**?**

Understanding 10-1 Processes is Hard!

"minimum bias" pp event in PYTHIA8 at √s=7 TeV, visualised using MCViz

The bulk: soft non-diffractive processes

from beam remnants and multiple soft and hard scatterings

Evidence for Underlying Event / Multi-parton Scattering

• Region transverse to hard scattering plane particularly sensitive to multiple (parton) interactions. • Pre-LHC MC models predicted too little transverse activity and jettiness in $\Delta\phi \sim 180^\circ$ away region ...

> <d²N_{ch}/dηd¢> 1.6 **ATLAS Transverse Region** \sqrt{s} = 7 TeV Δφ 1.4 leading track $p > 0.5$ GeV and $m < 2.5$ 1.2 0.8 toward $\Delta\phi$ <60 0.6 transverse ansverse 0.4 Data 2010 PYTHIA DW $60<|\Delta\phi|<120$ $0<|\Delta\phi|<120^{\circ}$ PYTHIA Perugia0 PYTHIA ATLAS MC09 0.2 HERWIG∔JIMMY ATLAS MC09 PHOJE1 $\frac{1}{20}$ **MC/Data** 1.4 12 у 0.8 0.6 16 20 8 10 12 14 18 p_{τ}^{lead} [GeV]

"Hard" Scattering

protor

derlying event

outgoing parton

outgoing parton

final-state

radiation

proton

inderlying ever initial-state radiation

ᇫ

Complex Dynamics! e.g. Baryon Number Transport

- $\bar p/p$ ratio must be close to 1 in central region
- Decreases at large |y| (or $|\eta|$) due to baryon number +1 beam particles
- Baryon number transport over $\Delta y \rightarrow 5$ rapidity units from beam partiçle

Rapidity Coverage at LHC

- System with centre of mass energy \sqrt{s} hadronises over (pseudo)-rapidity region Δy~ ln $\frac{s}{m}$ $m_{\bm p}^2$ $_2^-$ with roughly constant particle production per unit (pseudo)rapidity in the central region, tailing off towards the beam particles

- Forward (large $|y|$) region in principle sensitive to low x physics, parton cascade dynamics and underlying event

- Main LHC experiments are focused on central region, but there is also forward instrumentation …

- 'Central' ATLAS and CMS give information up to $|y|$ ~4.5 – 5.0

 ΣE _T [GeV]

underlying QCD dynamics

Dedicated low-x observables in LHC Physics

- …

Example observables from early LHC stuies:

- Azimuth decorrelations between jets
- Gaps between jets

Strongly interacting colour-singlet exchanges

- Elastic scattering (later today)
- Diffractive dissociation (later today)
- Central inclusive production (elsewhere)
- Central exclusive production (elsewhere)
- Ultra-peripheral collisions (next lecture)

Azimuthal Decorrelations between Mueller-Navelet jets

- Choice of Forward-Backward highest E_T jets with comparable energy suppresses phase-space for DGLAP evolution and offers chance to search for BFKL evolution

- Sensitivity enhanced at large azimuthal decorrelation due to multiple emissions

... Jets separated by up to $\Delta y = 9.4$ units!

- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data BUT
- DGLAP-based models with tuning also describe data

 \rightarrow This is typical despite increasingly sophisticated observables

LHC Searches for BFKL Pomeron: Jet-gap-jet events GAP

- Gaps between jets are classic signature for BFKL dynamics ('BFKL pomeron exchange')

- Complicated by rapidity gap survival / infrared safety and pile-up
- Typical observable: fraction f_{CSF} of dijet events with gap versus size of gap

- Not describable with standard MC. Broad agreement with BFKL models. 15

Elastic and Diffractive Processes in Proton-Proton Collisions

[See also Valery Khoze lectures on 'High Energy soft QCD & Diffraction']

We are concerned with processes where no net quantum numbers are exchanged and the protons either stay intact or `dissociate'

Methods for Diffraction and Elastics

… old slide from diffraction at HERA

Partially still true for LHC (but proton tagging technology $_{17}$ got better and rapidity gaps got harder to identify)

TOTEM RP180 RP147 RP220 $Q₂$ D₂ Q₄ $Q5$

First Generation LHC Proton Spectrometers (TOTEM & ATLAS-ALFA)

'Roman pot' vacuum-sealed insertions to beampipe, well downstream of IP.

Not very radiation-hard \rightarrow deployed in dedicated (high β^* , low luminosity)

Second Generation LHC Proton Spectrometers (PPS at CMS and AFP at ALFA)

Radiation-hard detectors, designed to operate in standard high luminosity runnning.

Advantages of Roman Pot Technology

M. Trzebiński

AFP Detectors

[a nice illustration, from AFP, with thanks to Maciej Trzebinski]

 $4/21$

Advantages of Roman Pot Technology

LHC beam

Advantages of Roman Pot Technology

thin window and floor (300 μ m)

Advantages of Roman Pot Technology

shadow of TCL4 and TCL5
collimators LHC beam

thin window and floor (300 μ m)

Advantages of Roman Pot Technology

diffractive protons thin window and floor (300 μ m)

100

e e ප
geometric acceptance [%]

Advantages of Roman Pot Technology

 $(\bm{\xi})$

p

p

p

 $X(M_x)$

e e ප
geometric acceptance [%] 20 2 proton transverse momentum p_ [GeV]

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

 $(\bm{\xi})$

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 $(\bm{\xi})$

 (ξ)

 (ξ)

 (ξ)

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 (ξ)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

 (ξ)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

 $(\bm{\xi})$

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

 (ξ)

terms of kinematics of `Single Diffractive Dissociation' (SD)

42

p

Impact Parameter

At fixed √s, 1 non–trivial variable \rightarrow squared 4-momentum transfer, t

p

Typically $|t| \ll 1$ GeV²: non-perturbative

At fixed s:
$$
\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\bigg|_{t=0} e^{Bt}
$$

Slope parameter B measures mean impact parameter (~size of interaction region \sim range of strong force \sim 1-2fm).

Universal Exchange Picture of Elastic and Diffractive Scattering

- Regge asymptotics offers unified picture in terms of trajectory exchanges
	- Soft `Pomeron' dominates for sufficiently large \sqrt{s} .

• Non-perturbative object, but in Perturbative limits, loosely interpreted as exchange of two gluons in net colour singlet state, and ultimately BFKL pomeron

SOFT Pomeron trajectory:

$$
\alpha(t) = \alpha(0) + \alpha' t \approx 1.085 + 0.25t
$$

For **elastic scattering**:

$$
\frac{d \sigma_{EL}}{dt} = \left(\frac{s}{s_0}\right)^{2\alpha(t)-2} e^{Bt}
$$

… Leads to slope parameter growing logarithmically with energy

$$
B = B_0 + 2\alpha' \ln\left(\frac{s}{s_0}\right)
$$
 43

Example Elastic Scattering Data

Precise t dependence over low |t| range at LHC …

`Standard' exponential fit, excluding lowest |t| (influence of Coulomb scattering) and largest |t|(deviations, perhaps due to pQCD effects)

 $d\sigma$ $d\sigma$ e^{Bt} dt

e.g. at $\sqrt{5}$ =13 TeV ... B=21.14 \pm 0.2413 GeV⁻² (ALFA)

√s dependence of t Slopes

- B increases with \sqrt{s} ... 'shrinkage' of forward elastic peak \rightarrow

… increase of mean impact parameter / effective proton size as longer-lived fluctuations develop larger transverse size.

From fits at fixed s:

$$
\frac{\mathrm{d}\sigma_{\scriptscriptstyle{EL}}}{\mathrm{d}t} \propto \exp(Bt)
$$

`Standard' Pomeron pole' Regge theory

$$
B = B_0 + 2\alpha' \ln\left(\frac{s}{s_0}\right)
$$

- ATLAS and TOTEM agree well

- Growth at LHC seems faster than `standard' $\alpha' \sim 0.25$ GeV⁻²

- Parameterisations with \ln^2 term or more complex dependences better $_{45}$ … Single pomeron exchange insufficient (multi-IP / absorptive corrections)

From Elastic to Total Cross Sections

Elastic amplitude closely related to total x-sec via optical theorem …

$$
\sigma_{TOT}^2 = \frac{16\pi \left(\hbar c\right)^2}{1+\rho^2} \cdot \left. \frac{d\sigma_{EL}}{dt} \right|_{t=0}
$$

 $[p ~ 0.1 = Real / Imaginary part of hadronic amplitude at t=0]$

In Regge language, leads to $\sigma_{tot} \propto \left(\frac{s}{s_0}\right)^{\alpha}$

[But beware: Asymptotically (Froissart bound) limited to $\ln^2 s$ dependence]

obtained through $t=0$ extrapolation of hadronic part of elastic cross section (~10% extrapolation)

More sophisticated treatment exploits Coulomb-Nuclear interference and fit full t range, simultaneously extracting σ_{tot} and ρ ... see later

Total Cross Section versus √s

- Growth is slower than Regge pole power-law prediction.

- e.g. COMPETE prediction based on fits to lower energy data with multi-IP exchanges, leading to In s and \ln^2 s terms

- Systematic differences between ALFA and TOTEM arise from normalisations of elastic data.

Cosmic ray data extend to 50 TeV!

c.f. ALFA 13 TeV: $\sigma_{tot} = 104.7 \pm 1.1$ mb.

Some Low-x Implications of Elastics

- Ratio of elastic to total cross section grows with \sqrt{s} ... related to low-x parton density growth
- Reaches \sim 0.26 at LHC.
- c.f. Black disk limit is 0.5
- \cdot ρ parameter precisely extracted.

- TOTEM interpret failure of models to simultaneously describe ρ and σ_{tot} as evidence for C- odderon exchange

Odderons and pp versus ppbar

- CP-odd odderon exchange would contribute oppositely in pp (eg LHC) and ppbar (eg Tevatron) as $s \to \infty$. \rightarrow smoking gun signature ...

 LHC (TOTEM) elastic scattering data extending to large |t| ('diffractive dip') extrapolated from 2.76 TeV v Tevatron (D0) at 1.96 TeV

- Difference between pp and ppbar at $>3\sigma$ level

- Together with TOTEM σ_{tot} and ρ results (also > 3 σ), presented as an Odderon discovery

- See Valery Khoze lectures for a full discussion

Inelastic Diffraction

Single diffractive dissociation

Additional kinematic variables:

$$
\xi = \frac{M_X^2}{s} = 1 - \frac{E_p'}{E_p}
$$

$$
\xi_Y = \frac{M_Y^2}{s}
$$

At LHC, M_X , M_Y can be as large as 1 TeV in soft diffractive processes

Double diffractive dissociation

- Only one published measurement [pp \rightarrow pX with $\xi = M_X^2/s$]

- Interpreted in Regge theory ('Triple Regge') … At fixed s, with the same universal pomeron as that describing elastic cross sections …

- Fitting the data $\alpha(0) = 1.07 \pm 0.02$ (stat.) ± 0.06 (syst.) ± 0.06 (α') yields consistent $B = 7.65 \pm 0.26$ (stat.) ± 0.22 (syst.) GeV⁻² results with soft pomeron, but with large uncertainties

 $rac{d\sigma}{d\xi dt} \propto \left(\frac{1}{\xi}\right)$

Diffractive Channels: & Rapidity Gap Kinematics

 $-\xi = \frac{M_X^2}{2}$ s is strongly correlated with empty rapidity regions … exploited in SD measurements

[Correlation limited by hadronisation fluctuations]

Rapidity gap cross-sections

Method developed by ATLAS to measure hadron level cross section as a function of $\Delta \eta^F$: forward rapidity gap extending to limit of instrumented range: i.e. including $\eta = \pm 4.9$

... no statement on $|\eta| > 4.9$... large $\Delta \eta^F$ sensitive to $SD + low M_Y DD$

CMS and ATLAS Rapidity Gap Data

- Using very early LHC runs at 7 TeV (avoiding pile-up) …

ATLAS: $\Delta \eta^F$ extends from $\eta = \pm 4.9$ to 1st particle with p_t>200 MeV

- CMS: $\Delta \eta^F$ extends from $\eta = \pm 4.7$ to 1st particle with p_t >200 MeV

Large Gap Region compared with Models

Large differences between Monte Carlo models due to assumptions on total diffractive cross sections, $\alpha(t)$ and fragmentation modelling.

Fit to large $\Delta \eta^F$ data using $\Delta \eta \sim -\ln \xi$ relation and $\frac{d\sigma}{d\xi dt} \propto \left(\frac{1}{\xi}\right)$
 $\alpha_{IP}(0) = 1.058 \pm 0.003$ (stat) ± 0.036 (syst) $\frac{d\xi dt}{d\xi dt}$ $\alpha_{IP}(0) = 1.058 \pm 0.003$ (stat) \pm 0.036 (syst) ر ر

… still consistent with soft pomeron …

 $2\alpha(t)-\alpha(0)$

Current and Future Diffraction at LHC

- Most of the ongoing diffractive programme involves Roman Pot tagging in normal high luminosity running conditions

 \rightarrow Studies with double proton tags (pp \rightarrow ppX)

- **Inclusive central production** pomeron-pomeron hard scattering with jets, HF, W, Z signatures
- **Central Exclusive QCD Production**

of dijets, γ -jet and other strongly produced high mass systems … Higgs?...

- Two photon physics \rightarrow **exclusive** dileptons, dibosons & anomalous multiple gauge couplings … **[Dominates at large masses]** $\gamma_{\mathcal{A}}$ $\gamma_{\mathcal{B}}$ $\gamma_{\mathcal{B}}$

AFP Observation of Single Diffractive Dijet Signal

- Single proton tagged sample with ξ measured in main ATLAS calorimeter

- Strong enhancement in low ξ_{Cal} diffractive region for AFPtriggered data over MBTS data + common pile-up contribution

Low ξ data exhibit expected x-y correlation in AFP pixels and correlation between pixel x position and ξ_{Cal}

 \rightarrow Clear diffractive signature

First Publications on $\gamma\gamma$ **Process**

- -5σ observations by CMS-PPS and $ATLAS-AFP$ in ee and $\mu\mu$ channels
- Dilepton masses \rightarrow TeV scale
- First (ATLAS) cross-section measurements consistent with calculations

\rightarrow See Valery and Christophe's lectures

Correlation between x measured In Roman Pots v Central Detectors

Di-lepton rapidity versus mass

Summary

- Bulk data at LHC is a laboratory for soft strong interactions
	- Rich phenomenology of non-diffractive processes, but hard to extract underlying dynamics
	- Gaps between jets provide some evidence for BFKL
	- Elastic and diffractive data broadly as expected from soft-Pomeron Regge predictions, but with need for multi-pomeron exchanges.
	- Not yet at black disk limit, but σ_{EL}/σ_{TOT} within factor ~2

Next Lecture

- Diffraction at the parton level \rightarrow Diffractive DIS and Ultra-peripheral LHC Collisions
- Prospects with Future ep Colliders