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Lecture 2

• Minimum Bias LHC Data à Features of Non-Diffractive Data

• Experimental methods for processes with intact protons

• Elastic scattering at the LHC 

• Single Diffractive dissociation at the LHC



LHC: Exploring the ultra-rare at 
the Energy Frontier
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But what usually happens when hadrons
collide at large √𝒔?
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“minimum bias” 
pp event in  
PYTHIA8 
at √s=7 TeV, 
visualised 
using MCViz

… the real revolution at the 
          wild energy frontier? 6

Understanding 10-1 Processes is Hard!

Eugène DELACROIX:
La Liberté guidant le peuple
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Complicated! … and
non-perturbative aspects
not ignorable even for
hard scatterings …

The “underlying 
event”: originates 
from beam remnants 
and multiple soft and hard scatterings   

The bulk: soft non-diffractive processes 



Evidence for Underlying 
Event / Multi-parton 

Scattering

• Region transverse to hard scattering plane 
particularly sensitive to multiple (parton) interactions.
• Pre-LHC MC models predicted too little transverse 
activity and jettiness in Df ~ 180o away region …
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Complex Dynamics! 
e.g. Baryon Number Transport

HERA,
(1992-
2007)

- ⁄𝑝̅ 𝑝 ratio must be close to 1 in central region
- Decreases at large |y| (or 𝜂 	)	due to baryon number +1 beam particles
- Baryon number transport over Dy à 5 rapidity units from beam particle
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Rapidity Coverage at LHC

- Main LHC experiments are 
focused on central region, but 
there is also forward 
instrumentation …

- ‘Central’ ATLAS and CMS give 
information up to 𝑦 ~4.5 − 5.0

- System with centre of mass energy √𝑠 hadronises over (pseudo)-rapidity 
region ∆𝑦~ ln !

"!
" with roughly constant particle production per unit (pseudo)-

rapidity in the central region, tailing off towards the beam particles

- Forward (large 𝑦 ) region in principle sensitive to low x physics, parton 
cascade dynamics and underlying event
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Example Data from 
main Detectors

HERA,
(1992-
2007)

- No Monte Carlo models describe
all features ‘out of the box’ 

- Testing ground for models (mainly 
a tuning exercise) as used in eg
cosmic ray air showers

- Complicated (rich!) physics, but
hard to extract information about 
underlying QCD dynamics 

Transverse Energy Flow
versus |h| up to |h|= 4.8)

Total transverse energy
with 4.0 < |h| < 4.8 
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The Really 
Very Forward 

Region
Charged particle 

multiplicity 
measurements beyond the 

rapidity plateau

- Very Forward tracking provided by LHCb 
and TOTEM T2 telescope (5.3 < |h| < 6.5) 
show changed behaviour towards beam 
 
- Similarly calorimeters: ATLAS LUCID,  CMS 
CASTOR and dedicated fwd experiments (LHCf)

- More for model tuning than deep insights 



Dedicated low-x observables in LHC Physics

Example observables from early LHC stuies:
 - Azimuth decorrelations between jets
 - Gaps between jets
 - …

Strongly interacting colour-singlet exchanges 
 - Elastic scattering (later today)
 - Diffractive dissociation (later today)
 - Central inclusive production (elsewhere)
 - Central exclusive production (elsewhere)
 - Ultra-peripheral collisions (next lecture)
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Azimuthal Decorrelations between 
Mueller-Navelet jets

… Jets separated by up to Dy = 9.4 units!
- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data
BUT
- DGLAP-based models with tuning also describe data
       à This is typical despite increasingly sophisticated observables

- Choice of Forward-Backward
highest ET jets with comparable 
energy suppresses phase-space for 
DGLAP evolution and 
offers chance to search
for BFKL evolution  

- Sensitivity enhanced 
at large azimuthal 
decorrelation due to 
multiple emissions
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- Complicated by rapidity gap survival / infrared safety and pile-up
- Typical observable: fraction fCSE of dijet events with gap versus size of gap

- Not describable with standard MC. Broad agreement with BFKL models. 

LHC Searches for BFKL 
Pomeron: Jet-gap-jet events

- Gaps between jets are classic signature 
for BFKL dynamics (‘BFKL pomeron exchange’)
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Elastic and Diffractive Processes
in Proton-Proton Collisions

[See also Valery Khoze lectures on ‘High Energy soft QCD & Diffraction’]

We are concerned with processes where no net quantum numbers are 
exchanged and the protons either stay intact or `dissociate’ 

- There are also more complex topologies

- Experimental signatures: 
 … intact protons scattered through 
  very small angles
 … large regions with no particle
  production (‘rapidity gaps’)



Methods for Diffraction and Elastics
… old slide from diffraction at HERA 

Partially still true for LHC (but proton tagging technology
got better and rapidity gaps got harder to identify) 
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First Generation LHC 
Proton Spectrometers

(TOTEM & ATLAS-ALFA) 

‘Roman pot’ vacuum-sealed 
insertions to beampipe, well 
downstream of IP.

Not very radiation-hard
à deployed in dedicated 
(high b*, low luminosity) 
LHC runs 18



Second Generation LHC Proton Spectrometers
(PPS at CMS and AFP at ALFA) 

19

AFP @
ATLAS

Radiation-hard
detectors, 
designed to
operate in 

standard high
luminosity 
runnning.



[a nice illustration, from AFP, with thanks to Maciej Trzebinski] 
20

Principle of Roman Pot Detectors
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Principle of Roman Pot Detectors
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Principle of Roman Pot Detectors
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(x)
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Described here in 
terms of kinematics
of `Single Diffractive
Dissociation’ (SD)

x = fractional proton energy loss
t = -pT

2 of outgoing proton

Principle of Roman Pot Detectors
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Typically |t| << 1 GeV2: non-perturbative

 At fixed s:   

Slope parameter B measures mean impact 
parameter (~size of interaction region 
~ range of strong force ~1-2fm).

At fixed √s,  1 non–trivial variable
à squared 4-momentum transfer, t 

Start`Simple’:
Elastic Scattering

42



• Regge asymptotics offers unified picture in terms 
of trajectory exchanges

• Soft `Pomeron’ dominates for sufficiently large √𝑠.

• Non-perturbative object, but in Perturbative limits, 
loosely interpreted as exchange of two gluons in net 
colour singlet state, and ultimately BFKL pomeron 
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Universal Exchange Picture of Elastic and
Diffractive Scattering

… Leads to slope parameter 
    growing logarithmically with energy

SOFT Pomeron trajectory: 

For elastic scattering: 
4	5!"
4	6

= 7
7#

89 6 :8
𝑒;6

 



Example Elastic Scattering Data

`Standard’ exponential fit, excluding lowest |t| 
(influence of Coulomb scattering) and largest 
|t|(deviations, perhaps due to pQCD effects)

e.g. at √s=13 TeV …

Precise t dependence over low |t| range at LHC … 

B=21.14 ± 0.2413 GeV-2 (ALFA)

TOTEM
13 TeV

44

ALFA
7 TeV



√s dependence of t Slopes 
- B increases with √s … ‘shrinkage’ of forward elastic peak à
… increase of mean impact parameter / effective proton size as longer-lived 
fluctuations develop larger transverse size.

- Growth at LHC seems faster than `standard’ a’ ~ 0.25 GeV-2 
- Parameterisations with ln2 term or more complex dependences better 
    … Single pomeron exchange insufficient (multi-IP / absorptive corrections)  

From fits at fixed s:

`Standard’ Pomeron 
`pole’ Regge theory

- ATLAS and TOTEM 
agree well
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From Elastic to Total Cross Sections 
Elastic amplitude closely related 
to total x-sec via optical theorem …

In Regge language, leads to

[But beware: Asymptotically (Froissart bound) limited to ln#𝑠 dependence] 

obtained through
           extrapolation 
of hadronic part of 
elastic cross section 
(~10% extrapolation)

[r ~ 0.1 = Real / Imaginary part of hadronic amplitude at t=0]

More sophisticated treatment exploits Coulomb-Nuclear interference and fit 
full t range, simultaneously extracting stot and r … see later



Total Cross Section versus √s  
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- Growth is slower than
Regge pole power-law
prediction.

- e.g. COMPETE prediction
based on fits to lower 
energy data with multi-IP 
exchanges, leading to 
ln s and ln2 s terms

- Systematic differences 
between ALFA and TOTEM
arise from normalisations
of elastic data.

Cosmic ray data
extend to 50 TeV!

[TOTEM
13 TeV]

c.f. ALFA 13 TeV: 𝜎#$# = 104.7 ± 1.1mb.



Some Low-x Implications of Elastics
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- Ratio of elastic to total cross 
section grows with √𝑠 … related to 
low-x parton density growth 
- Reaches ~0.26 at LHC. 
c.f. Black disk limit is 0.5

- r parameter precisely extracted. 
- TOTEM interpret failure of models
to simultaneously describe r and 
stot as evidence for C- odderon exchange



Odderons and pp versus ppbar
- CP-odd odderon exchange would contribute oppositely 
in pp (eg LHC) and ppbar (eg Tevatron) as 𝑠 → ∞.
  à smoking gun signature …

   LHC (TOTEM) elastic scattering data extending to large |t| (‘diffractive
dip’) extrapolated from 2.76 TeV v Tevatron (D0) at 1.96 TeV
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- Difference between
pp and ppbar at >3s level

- Together with TOTEM
stot and r results (also > 3s), 
presented as an Odderon
discovery

- See Valery Khoze lectures
for a full discussion 



Single diffractive dissociation  

Inelastic Diffraction

At LHC, MX, MY can be as large as 
1 TeV in soft diffractive processes

Double diffractive dissociation

Additional kinematic variables:
’
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Proton-tagged Single 
Diffraction (ALFA)

- Only one published measurement [ppàpX with 𝜉 = 	 ⁄𝑀$# 𝑠 ]
 
- Interpreted in Regge theory (‘Triple Regge’) … 
At fixed s, with the same universal pomeron 
as that describing elastic cross sections …

- Fitting the data
yields consistent
results with soft
pomeron, but with large uncertainties   



Diffractive Channels: 
& Rapidity Gap Kinematics

- 𝜉 = #!!
"
" is strongly correlated with

empty rapidity regions
  … exploited in SD measurements

[Correlation limited by hadronisation fluctuations] 

x
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Rapidity gap cross-sections
Method developed by 
ATLAS to measure hadron
level cross section as a 
function of DhF:  forward 
rapidity gap extending 
to limit of instrumented 
range: i.e. including h= ±4.9

… no statement on |h| > 4.9
… large DhF sensitive to 
  SD + low MY DD

DhF ~ 6 event in ATLAS

Implies x~10-4

DhF
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CMS and ATLAS Rapidity Gap Data
- Using very early LHC runs at 7 TeV (avoiding pile-up) …
ATLAS: DhF extends from h= ±4.9 to 1st particle with pt>200 MeV
- CMS: DhF extends from h= ±4.7 to 1st particle with pt>200 MeV

Small gaps
dominated
by non-
diffractive
processes
… exponentially
suppressed and
sensitive to hadronisation 
fluctuations / underlying event

Large gaps
dominated
by diffractive
processes …
characteristic
plateau

Roughly 1mb per 
unit gap size

54



Large Gap Region compared with Models

- Large differences between Monte Carlo models due to assumptions on 
total diffractive cross sections, a(t) and fragmentation modelling. 

- Fit to large DhF data using ∆𝜂~ − ln 𝜉 relation and 
 aIP(0) = 1.058 ± 0.003 (stat) ± 0.036 (syst)

    … still consistent with soft pomeron …

x~ 10-2.5

x ~ 10-5
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Current and Future Diffraction at LHC
- Most of the ongoing diffractive programme involves Roman
Pot tagging in normal high luminosity running conditions
 à Studies with double proton tags (ppàppX)

- Inclusive central production 
pomeron-pomeron hard scattering 
with jets, HF, W, Z signatures

- Central Exclusive QCD Production 
of dijets, g-jet and other strongly 
produced high mass systems … Higgs?... 

- Two photon physics à exclusive
dileptons, dibosons & anomalous 
multiple gauge couplings …
          [Dominates at large masses] 56



AFP Observation of Single 
Diffractive Dijet Signal

- Single proton
tagged sample 
with x measured
in main ATLAS calorimeter

- Strong enhancement in low xCal 
diffractive region for AFP-
triggered data  over MBTS data
+ common pile-up contribution 

Low x data exhibit expected x-y 
correlation in AFP pixels and 
correlation between pixel x 
position and xCal 

à Clear diffractive signature 
57



First Publications on gg Process
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Correlation between x measured
In Roman Pots v Central Detectors

Di-lepton rapidity versus mass

- 5s observations by CMS-PPS
and ATLAS-AFP in ee and µµ channels

- Dilepton masses à TeV scale

- First (ATLAS) cross-section measurements 
consistent with calculations 

 à See Valery and Christophe’s lectures



Summary

• Bulk data at LHC is a laboratory for soft strong interactions
 - Rich phenomenology of non-diffractive processes, 
  but hard to extract underlying dynamics
 - Gaps between jets provide some evidence for BFKL
 - Elastic and diffractive data broadly as expected from
  soft-Pomeron Regge predictions, but with need for 

 multi-pomeron exchanges.
 - Not yet at black disk limit, but 𝜎#$/𝜎%&%	within factor ~2

 

• Diffraction at the parton level à Diffractive DIS and 
      Ultra-peripheral LHC Collisions 

• Prospects with Future ep Colliders
59

Next Lecture


