Forward Physics: An Experimental Perspective

Prof Paul Newman (University of Birmingham)

H1, ATLAS, LHeC, ePIC experiments

(please call me Paul) Email: p.r.newman@bham.ac.uk

Midsummer School in QCD Saariselkä, Finland June 2024 Lecture 2: Soft Forward Physics & Diffraction in proton-proton Collisions

Lecture 2

- Minimum Bias LHC Data \rightarrow Features of Non-Diffractive Data
- Experimental methods for processes with intact protons
- Elastic scattering at the LHC
- Single Diffractive dissociation at the LHC

LHC: Exploring the ultra-rare at the Energy Frontier

But what usually happens when hadrons collide at large \sqrt{s} ?

But what usually happens when hadrons collide at large \sqrt{s} ?

Understanding 10⁻¹ Processes is Hard!

"minimum bias" pp event in PYTHIA8 at √s=7 TeV, visualised using MCViz

The bulk: soft non-diffractive processes

and multiple soft and hard scatterings

Evidence for Underlying Event / Multi-parton Scattering

Region transverse to hard scattering plane particularly sensitive to multiple (parton) interactions.
Pre-LHC MC models predicted too little transverse activity and jettiness in Δφ ~ 180° away region ...

Complex Dynamics! e.g. Baryon Number Transport

- \bar{p}/p ratio must be close to 1 in central region
- Decreases at large |y| (or $|\eta|$) due to baryon number +1 beam particles
- Baryon number transport over $\Delta y \rightarrow 5$ rapidity units from beam particle

Rapidity Coverage at LHC

- System with centre of mass energy \sqrt{s} hadronises over (pseudo)-rapidity region $\Delta y \sim \ln \frac{s}{m_p^2}$ with roughly constant particle production per unit (pseudo)rapidity in the central region, tailing off towards the beam particles

- Forward (large |y|) region in principle sensitive to low x physics, parton cascade dynamics and underlying event

- Main LHC experiments are focused on central region, but there is also forward instrumentation ...

- 'Central' ATLAS and CMS give information up to $|y| \sim 4.5 - 5.0$

Example Data from main Detectors

Transverse Energy Flow versus $|\eta|$ up to $|\eta| = 4.8$)

Total transverse energy with 4.0 < $|\eta| < 4.8$

- No Monte Carlo models describe all features 'out of the box'

- Testing ground for models (mainly a tuning exercise) as used in eg cosmic ray air showers

- Complicated (rich!) physics, but hard to extract information about underlying QCD dynamics

Dedicated low-x observables in LHC Physics

Example observables from early LHC stuies:

- Azimuth decorrelations between jets
- Gaps between jets

Strongly interacting colour-singlet exchanges

- Elastic scattering (later today)
- Diffractive dissociation (later today)
- Central inclusive production (elsewhere)
- Central exclusive production (elsewhere)
- Ultra-peripheral collisions (next lecture)

Azimuthal Decorrelations between Mueller-Navelet jets

- Choice of Forward-Backward highest E_T jets with comparable energy suppresses phase-space for DGLAP evolution and offers chance to search for BFKL evolution

- Sensitivity enhanced at large azimuthal decorrelation due to multiple emissions

... Jets separated by up to $\Delta y = 9.4$ units!

- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data BUT
- DGLAP-based models with tuning also describe data
 This is typical despite increasingly conhisting

 \rightarrow This is typical despite increasingly sophisticated observables

LHC Searches for BFKL Pomeron: Jet-gap-jet events

- Gaps between jets are classic signature for BFKL dynamics ('BFKL pomeron exchange')

- Complicated by rapidity gap survival / infrared safety and pile-up
- Typical observable: fraction f_{CSE} of dijet events with gap versus size of gap

- Not describable with standard MC. Broad agreement with BFKL models.

Elastic and Diffractive Processes in Proton-Proton Collisions

[See also Valery Khoze lectures on 'High Energy soft QCD & Diffraction']

We are concerned with processes where no net quantum numbers are exchanged and the protons either stay intact or `dissociate'

Methods for Diffraction and Elastics

... old slide from diffraction at HERA

Partially still true for LHC (but proton tagging technology₁₇ got better and rapidity gaps got harder to identify)

'Roman pot' vacuum-sealed insertions to beampipe, well downstream of IP.

Not very radiation-hard \rightarrow deployed in dedicated (high β^* , low luminosity) LHC runs

First Generation LHC Proton Spectrometers (TOTEM & ATLAS-ALFA)

Second Generation LHC Proton Spectrometers (PPS at CMS and AFP at ALFA)

Radiation-hard detectors, designed to operate in standard high luminosity runnning.

Advantages of Roman Pot Technology

M. Trzebiński

AFP Detectors

[a nice illustration, from AFP, with thanks to Maciej Trzebinski]

4/21

Advantages of Roman Pot Technology

LHC beam

Advantages of Roman Pot Technology

thin window and floor (300 μ m)

Advantages of Roman Pot Technology

shadow of TCL4 and TCL5 LHC beam collimators

thin window and floor (300 μ m)

Advantages of Roman Pot Technology

diffractive protons thin window and floor (300 μ m)

100

Advantages of Roman Pot Technology

X (M_x)

р

р

(ξ)

р

Geometric acceptance: AFP 205.217 m 100 $vs = 13 \text{ TeV}, \beta^* = 0.4 \text{ m}, \text{ beam 1}$ θ_{c} = -170 µrad, d = 15.7 mm TCL4 @ 15 σ , TCL5 @ 35 σ 20 2 proton transverse momentum p_ [GeV]

terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

Advantages of Roman Pot Technology

X (M_×)

р

р

(ξ)

р

 θ_{c} = -170 µrad, d = 14.6 mm TCL4 @ 15 σ , TCL5 @ 35 σ 20 2 proton transverse momentum p_ [GeV] Described here in terms of kinematics

of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

Advantages of Roman Pot Technology

Described here in terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

4/21 33

100

Advantages of Roman Pot Technology

Geometric acceptance: AFP 205.217 m 0.2 $\sqrt{s} = 13 \text{ TeV}, \beta^* = 0.4 \text{ m}, \text{ beam 1}$ $\theta_c = -170 \mu \text{ rad}, d = 12.4 \text{ mm}$ TCL4 @ 15 σ , TCL5 @ 35 σ 0.15 0.15 0.05

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 $p \qquad (\xi) \qquad \xi = fr$ $p \qquad (t) \qquad p \qquad t = -p$

 ξ = fractional proton energy loss t = -p_T² of outgoing proton

4/21 34

Advantages of Roman Pot Technology

Geometric acceptance: AFP 205.217 m 0.2 $\sqrt{5} = 13$ TeV, $\beta^* = 0.4$ m, beam 1 $\theta_c = -170 \mu rad, d = 11.3$ mm TCL4 @ 15 σ , TCL5 @ 35 σ 0.15 0.15 0.050.

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss t = -p_T² of outgoing proton

Advantages of Roman Pot Technology

 $vs = 13 \text{ TeV}, \beta^* = 0.4 \text{ m}, \text{ beam 1}$ θ_{c} = -170 µrad, d = 10.1 mm TCL4 @ 15 σ , TCL5 @ 35 σ 20 2 proton transverse momentum p_ [GeV] Described here in terms of kinematics

of Single Diffractive Dissociation' (SD)

<mark>Х (М</mark>_х) р (ξ) р р

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

4/21 36

Advantages of Roman Pot Technology

20 2 proton transverse momentum p_ [GeV] Described here in terms of kinematics of Single Diffractive Dissociation' (SD)

(ξ) ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton р

<mark>Х (М</mark>_х)

р

р

100

Advantages of Roman Pot Technology

X (M_x)

р

р

(ξ)

р

Described here in terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

100

Advantages of Roman Pot Technology

<mark>X (M</mark>_×)

р

р

(ξ)

р

20 proton transverse momentum p_ [GeV] Described here in terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

Advantages of Roman Pot Technology

X (M_x)

р

р

(ξ)

р

Described here in terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

4/21

100

Advantages of Roman Pot Technology

<mark>Х (М</mark>_×)

р

р

(ξ)

р

terms of kinematics of Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss $t = -p_T^2$ of outgoing proton

100

At fixed $\int s$, 1 non-trivial variable \rightarrow squared 4-momentum transfer, t

р

Impact Parameter

р

42

Typically |t| << 1 GeV²: non-perturbative

At fixed s:
$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt} \Big|_{t=0} e^{Bt}$$

Slope parameter B measures mean impact parameter (~size of interaction region ~ range of strong force ~1-2fm).

Universal Exchange Picture of Elastic and Diffractive Scattering

- Regge asymptotics offers unified picture in terms of trajectory exchanges
 - Soft `Pomeron' dominates for sufficiently large \sqrt{s} .

• Non-perturbative object, but in Perturbative limits, loosely interpreted as exchange of two gluons in net colour singlet state, and ultimately BFKL pomeron

SOFT Pomeron trajectory:

$$\alpha(t) = \alpha(0) + \alpha't \approx 1.085 + 0.25t$$

For elastic scattering:

$$\frac{d \sigma_{EL}}{d t} = \left(\frac{s}{s_0}\right)^{2\alpha(t)-2} e^{Bt}$$

... Leads to slope parameter growing logarithmically with energy

$$B = B_0 + 2\alpha' \ln\left(\frac{s}{s_0}\right) \quad _{43}$$

Example Elastic Scattering Data

Precise t dependence over low |t| range at LHC ...

`Standard' exponential fit, excluding lowest |t| (influence of Coulomb scattering) and largest |t|(deviations, perhaps due to pQCD effects) $\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\mathrm{d}\sigma}{\mathrm{d}t} \bigg|_{t=0} e^{Bt}$

e.g. at $\int s=13 \text{ TeV} \dots$ B=21.14 ± 0.2413 GeV⁻² (ALFA)

Js dependence of t Slopes

- B increases with $\int s \dots$ 'shrinkage' of forward elastic peak \rightarrow

... increase of mean impact parameter / effective proton size as longer-lived fluctuations develop larger transverse size.

- Growth at LHC seems faster than `standard' α ' ~ 0.25 GeV⁻²

Parameterisations with ln² term or more complex dependences better₄₅
 ... Single pomeron exchange insufficient (multi-IP / absorptive corrections)

From Elastic to Total Cross Sections

Elastic amplitude closely related to total x-sec via optical theorem ...

$$\sigma_{TOT}^{2} = \frac{16\pi (hc)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

 $[\rho \sim 0.1 = \text{Real} / \text{Imaginary part of hadronic amplitude at t=0}]$

In Regge language, leads to $\sigma_{tot} \propto \left(\frac{s}{s_c}\right)^{\alpha}$

[But beware: Asymptotically (Froissart bound) limited to $\ln^2 s$ dependence]

of hadronic part of elastic cross section (~10% extrapolation)

More sophisticated treatment exploits Coulomb-Nuclear interference and fit full t range, simultaneously extracting σ_{tot} and ρ ... see later

Total Cross Section versus √s

- Growth is slower than Regge pole power-law prediction.

- e.g. COMPETE prediction based on fits to lower energy data with multi-IP exchanges, leading to In s and In² s terms

- Systematic differences between ALFA and TOTEM arise from normalisations of elastic data.

Cosmic ray data extend to 50 TeV!

c.f. ALFA 13 TeV: $\sigma_{tot} = 104.7 \pm 1.1$ mb.

Some Low-x Implications of Elastics

- Ratio of elastic to total cross section grows with \sqrt{s} ... related to low-x parton density growth
- Reaches ~0.26 at LHC.
- c.f. Black disk limit is 0.5
- ρ parameter precisely extracted.

- TOTEM interpret failure of models to simultaneously describe ρ and σ_{tot} as evidence for C- odderon exchange

Odderons and pp versus ppbar

- CP-odd odderon exchange would contribute oppositely in pp (eg LHC) and ppbar (eg Tevatron) as $s \to \infty$. \rightarrow smoking gun signature ...

LHC (TOTEM) elastic scattering data extending to large |t| ('diffractive dip') extrapolated from 2.76 TeV v Tevatron (D0) at 1.96 TeV

- Difference between pp and ppbar at >3σ level

- Together with TOTEM σ_{tot} and ρ results (also > 3σ), presented as an Odderon discovery

- See Valery Khoze lectures for a full discussion

Inelastic Diffraction

Single diffractive dissociation

Additional kinematic variables:

$$\xi = \frac{M_X^2}{s} = 1 - \frac{E_p'}{E_p}$$
$$\xi_Y = \frac{M_Y^2}{s}$$

At LHC, M_X , M_Y can be as large as 1 TeV in soft diffractive processes

Double diffractive dissociation

- Only one published measurement [pp \rightarrow pX with $\xi = M_X^2/s$]

- Interpreted in Regge theory ('Triple Regge') ... At fixed s, with the same universal pomeron as that describing elastic cross sections ...

- Fitting the data
yields consistent $\alpha(0) = 1.07 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.06 (\alpha')$
 $B = 7.65 \pm 0.26 \text{(stat.)} \pm 0.22 \text{(syst.)} \text{ GeV}^{-2}$ pomeron, but with large uncertainties

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\xi\,\mathrm{d}t} \propto \left(\frac{1}{\xi}\right)^{2\alpha(t)-\alpha(0)} e^{bt}$$

Diffractive Channels: & Rapidity Gap Kinematics

- $\xi = \frac{M_X^2}{s}$ is strongly correlated with $\Delta \eta \approx -\ln \xi$ empty rapidity regions ... exploited in SD measurements

[Correlation limited by hadronisation fluctuations]

Rapidity gap cross-sections

Method developed by ATLAS to measure hadron level cross section as a function of $\Delta \eta^F$: forward rapidity gap extending to limit of instrumented range: i.e. including $\eta = \pm 4.9$

... no statement on $|\eta| > 4.9$... large $\Delta \eta^F$ sensitive to SD + low M_Y DD

CMS and ATLAS Rapidity Gap Data

- Using very early LHC runs at 7 TeV (avoiding pile-up) ...

ATLAS: $\Delta \eta^{F}$ extends from $\eta = \pm 4.9$ to 1st particle with p_{t} >200 MeV

- CMS: $\Delta \eta^{F}$ extends from η = ±4.7 to 1st particle with p_t>200 MeV

Large Gap Region compared with Models

- Large differences between Monte Carlo models due to assumptions on total diffractive cross sections, $\alpha(t)$ and fragmentation modelling.

- Fit to large $\Delta \eta^{F}$ data using $\Delta \eta \sim -\ln \xi$ relation and $\frac{d\sigma}{d\xi dt} \propto \left(\frac{1}{\xi}\right)^{2\alpha(t)-\alpha(t)}$

... still consistent with soft pomeron ...

 $2\alpha(t) - \alpha(0)$

obt

Current and Future Diffraction at LHC

- Most of the ongoing diffractive programme involves Roman Pot tagging in normal high luminosity running conditions

 \rightarrow Studies with double proton tags (pp \rightarrow ppX)

- Inclusive central production pomeron-pomeron hard scattering with jets, HF, W, Z signatures
- Central Exclusive QCD Production

of dijets, γ -jet and other strongly produced high mass systems ... Higgs?...

<u>Two photon physics</u> → exclusive dileptons, dibosons & anomalous multiple gauge couplings ...
 [Dominates at large masses]

AFP Observation of Single Diffractive Dijet Signal

- Single proton tagged sample with ξ measured in main ATLAS calorimeter

Strong enhancement in low ξ_{Cal}
 diffractive region for AFP triggered data over MBTS data
 + common pile-up contribution

Low ξ data exhibit expected x-y correlation in AFP pixels and correlation between pixel x position and ξ_{Cal}

 \rightarrow Clear diffractive signature

First Publications on yy Process

- 5σ observations by CMS-PPS and ATLAS-AFP in ee and $\mu\mu$ channels
- Dilepton masses \rightarrow TeV scale
- First (ATLAS) cross-section measurements consistent with calculations

$\sigma_{ m HERWIG+LPAIR} imes S_{ m surv}$	$\sigma_{ee+p}^{\mathrm{fid.}}$ (fb)	$\sigma^{ m fid.}_{\mu\mu+p}$ (fb)
$S_{\rm surv} = 1$	15.5 ± 1.2	13.5 ± 1.1
S_{surv} using Refs. [33,34]	10.9 ± 0.8	9.4 ± 0.7
SUPERCHIC 4 [97]	12.2 ± 0.9	10.4 ± 0.7
Measurement	11.0 ± 2.9	7.2 ± 1.8

\rightarrow See Valery and Christophe's lectures

Correlation between x measured In Roman Pots v Central Detectors

Di-lepton rapidity versus mass

Summary

- Bulk data at LHC is a laboratory for soft strong interactions
 - Rich phenomenology of non-diffractive processes, but hard to extract underlying dynamics
 - Gaps between jets provide some evidence for BFKL
 - Elastic and diffractive data broadly as expected from soft-Pomeron Regge predictions, but with need for multi-pomeron exchanges.
 - Not yet at black disk limit, but σ_{EL}/σ_{TOT} within factor ~2

Next Lecture

- Diffraction at the parton level \rightarrow Diffractive DIS and Ultra-peripheral LHC Collisions
- Prospects with Future ep Colliders