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The BFKL equation, again
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To complete the story...

Suppose now that we know F'(w, k, k', q)

The we take an inverse Mellin
transform to go back to s-space

1 c+100 w
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To recover the imaginary part of the ladder diagrams all we need to do is:
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The BFKL equation for zero
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Solution for zero momentum transfer

Let us write symbolically: wF =14+ F

By solving the equation we
mean finding IC X ¢a = wad)a

eigenfunctions such that:

The eigenfunctions obey the Z bo (k) d% (k') = 6% (k — k')

completeness relation:

* /
ba(k) O (k')
equation will be: T W — Wy
/V
a denotes a set of indices that can be discrete or continuous and the
summation symbol can hide an integration

Then the solution to the first F(w, k k') =



Solution for zero momentum transfer

Let us write symbolically: wF =14+ F

By solving the equation we

mean finding K QR by = waPa

eigenfunctions such that:

Actually, if we use polar coordinates k — (|k|, 19)
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Solution for zero momentum transfer

The solution will then be:

00 +00 eiu ln(:%—)
F(w, k, k') = -y eln- 0>/ dv
272 k2k’2 ERe— 00 w — wn (V)

Here, n is also called conformal spin, it is connected to the angular
information encoded in the gluon Green's function F(w, Kk, K’).



Solution for zero momentum transfer

Let us use Mathematica to plot

omegaln , v ] := Module[{asBar = 1/5},
Return[2 asBar (PolyGamma[O, 1] -
Re [PolyGamma [ (Abs[n] + 1)/2 + I v]1)11;

Plot[{omega[0O, v], omegal[l, v], omegal2, V],
omegal[3, v], omegal4, v]}, {v, 0, 3}]

Out{6)=




Solution for zero momentum transfer

1 o0 . , +00 eiu ln(ki,zg-)
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Retain only the n=0 term, this
from the analysis before

F(w,k, k") =
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Solution for zero momentum transfer

N
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Solution for zero momentum transfer

1 1
F(s,k, k') =
( ) V23N k2K’ _x/ln(s/kz)

s\ lnz(kz/k:'2) 1
8 (ﬁ) P __2)\’ ln(s/kz)_
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ap(0)=1+A=14+—"41n2
s

QCD Pomeron intercept way too large in comparison to the soft Pomeron intercept
If a, = 0.2, the intercept is ~0.5



The gluon Green's function
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Gluon Green’s Function

» a number




Solution for zero momentum transfer

Again in Mathematica:

omegaln , v ] := Module[{asBar = 1/5},
Return[2 asBar (PolyGamma[O, 1] -
Re[PolyGamma [ (Abs[n] + 1)/2 + I v]1)11:;

GGF[n , Y , ka , kb , angle ] :=
NIntegrate[Exp[I*n*angle]/ (2Pi"2) /ka/kb*2*Exp[omega[n,v]Y]*
Cos[2 Log[(ka/kb)] v], {v, 0, Infinity}, WorkingPrecision -> 20];

Now you can calculate the LO gluon Green's function for a given rapidity Y,
conformal spin n, and certain momenta of the reggeized gluons.

Note: Many times, in the

literature, the leading 1

eigenvalue is denoted as XO(V) — —92 Re {@b (— + zy) — Qp(]_)}
vo. It is also sometimes

called as the LO BFKL

kernel!



Solution for non-zero momentum
transfer
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High energy scattering QCD

multi-Regge kinematics at colliders

Mueller-Navelet (MN) jets  rapidity gaps DIS
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The high energy or Regge limit

DOO000000000 Ya, Ka

00000000 Y ki
000000000 V2, K
0000000000
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00000000000 Vb, Kb
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n+2 particle production in multi-Regge kinematics:

» strong ordering in rapidity

* similar transverse momenta

- Use Balitsky-Fadin-Kuraev-Lipatov (BFKL) dynamics. BFKL resums to
all orders diagrams that carry large logarithms in energy.



+—Beam axis—

Mueller-Navelet jets

p(p1) \L

large — rapidity
| jeta (kjz2, ¢J,2)

b1

zero rapidity

7L

L plane

Qg2 — T

jet1 (kji1, ¢J1)

large + rapidity

p(p2) T

Colferai, Schwennsen, Szymanowski, Wallon 2010



Mueller-Navelet jets
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Colferai, Schwennsen, Szymanowski, Wallon 2010



Mueller-Navelet jets

p(pl) +p(p2) — jet(le) +jet(kJ2) + X
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Mueller-Navelet jets

p(pl) _I_p(pQ) — jet(le) _I_jet(sz) + X
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GGF (Mathematica)

asBar =1/5;

omega[n , v ] :=
Block[{},
Return|
2 asBar (PolyGamma[0, 1] - Re[PolyGamma[ (Abs[n] +1) /2+Iv]])1]1;

GGF[n_, Y _ , ka_, kb_, angle_] :=
NIntegrate[Exp[Inangle]/ (2Pi7*2) /ka/ kb 2Exp[omega[n, v] Y] *
Cos[2 Log[(ka/kb)] v], {v, O, INfinity},
Method -» "DoubleExponentialOscillatory", WorkingPrecision - 20,
PrecisionGoal -» 10, MaxRecursion - 20];



GGF (Mathematica)

Table[{ka, GGF[0, 3, ka, 20, 0]}, {ka, 10, 40, 1/2}];
ListPlot[%, AxesLabel -» {Style[ka, Large], Style[GGF, Large]},
AxesStyle -» Directive[ 12]]
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Table[{ka, GGF[®, 5, ka, 20, 0]}, {ka, 10, 40, 1/2}];
ListPlot[%, AxesLabel » {Style[ka, Large], Style[GGF, Large]},
AxesStyle -» Directive[ 12]]

GGF

0.0020 -
0.0015 .
0.0010 -

0.0005 -

Table[{ka, GGF[O, 4, ka, 20, 0]}, {ka, 10, 40, 1/2}]};
ListPlot[%, AxesLabel » {Style[ka, Large], Style[GGF, Large]},
AxesStyle -» Directive[ 12]]
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Table[{ka, GGF[O, 6, ka, 20, O]}, {ka, 10, 40, 1/2}];
ListPlot[%, AxesLabel -» {Style[ka, Large], Style[GGF, Large]},
AxesStyle -» Directive[ 12]]
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— | CERN-PH-EP/2015-309
C MS, 2016/01/26

X\ \
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CMS-FSQ-12-002

Azimuthal decorrelation of jets widely separated in
rapidity in pp collisions at /s = 7 TeV

The CMS Collaboration™

Key question: What 1s the applicability
energy window for BFKL? Is it at LHC energies?

In the Conclusions of that paper, it reads:

The observed sensitivity to the implementation of the colour-coherence effects in the DGLAP
MC generators and the reasonable data-theory agreement shown by the NLL BFKL analyti-
cal calculations at large Ay, may be considered as indications that the kinematical domain of
the present study lies in between the regions described by the DGLAP and BFKL approaches.
Possible manifestations of BFKL signatures are expected to be more pronounced at increasing
collision energies.



A MN jets example with an
extra central jet tagged

Beam axis

Pseudo-detector



BFKLex

« A Monte Carlo code for the iterative solution of the BFKL equation

 The big advantage of a MC code is that differential information regarding
the rapidities and momenta of the final state gluons can be booked and
differential distributions for a large number of observables can be
produced.

- Already, BFKLex was used to propose new observables in order to
search for BFKL related effects at the LHC.

- We can run the code to compute the gluon Green’s function omitting the
bounding jets, PDFs, impact factors etc. (partonic level)

* We can run the code including all the omissions of the previous step
(full-run)



Why a Monte Carlo approach?

We don't always know the analytic solution

Even if we know it, we still want to store and analyze information about
“differential” quantities (e.g. rapidities, transverse momenta, angles)
that will be lost once we perform the integrations analytically. We want

this for two reasons:
1. Because then we can compare theoretical predictions to a
greater set of observables
2. Because there are lots of things we can still learn about
concepts we use every day and maybe we don't fully understand

We want to have a common language with people that work and are
familiar with fixed order calculations and who are the majority in the
“pheno” community — the interaction will help both sides

We want to work in momentum space
Connect to Heavy lon physics
Connect to physics of Cosmic Rays



Large logs from real emission corrections in
a Monte Carlo setup

> L.

K, (xl,'ﬁl - Assume Reggeons in the t-channel

' Assume you have only one real emission

Do the phase-space integration —> rest

Now assume you have two real emissions

Do the phase-space integration —> res2

Add the results: RES = res1+res2

' Now assume you have three real emissions

j a5, B - Do the phase-space integration —> res3
Add the results: RES = RES + res3

. Repeat until you have N real emissions with
ki > g fra resN so tiny compared to RES such that you
' are allowed to claim convergence

Kn Ay fn NOTE: The phase-space integration is over
: rapidity and transverse momenta.

\




BFKLex, a BFKL Monte Carlo

The main goal was to have a tool that calculates the gluon
Green’s function (GGF) and other differential observables.

The GGF is the solution to the BFKL equation. Use the iterative
form:

f= (kA) {5(2) (kA B kB) Z H ozsN 7 9 k;kz )

n=11=1

Yi—1 o S - - . n . .
/ dyie(w(kAJrzf:l ki) —w(ka+32120 ki))wi 5(2) (kA + Z ki — k3> }
0 =1
s N
(@ = -

The implementation of the BFKLex is in C++, G.C & A. Sabio Vera

2
log % is the gluon Regge trajectory



Some results with BFKLex

A Comparative study of small x Monte Carlos with and without QCD coherence effects
G. C, M. Deak, A.Sabio Vera, P. Stephens

Nucl.Phys. B849 (2011) 28-44

The Colour Octet Representation of the Non-Forward BFKL Green Function
G. C, A. Sabio Vera.
Phys.Lett. B709 (2012) 301-308

The NLO N =4 SUSY BFKL Green function in the adjoint representation
G. C, A.Sabio Vera
Phys.Lett. B717 (2012) 458-461

Bootstrap and momentum transfer dependence in small x evolution equations
G. C, A. Sabio Vera, C. Salas

Phys.Rev. D87 (2013) no.1, 016007

A study of the diffusion pattern in N = 4 SYM at high energies
F. Caporale, G. C, J.D. Madrigal, B. Murdaca, A. Sabio Vera
Phys.Lett. B724 (2013) 127-132

Monte Carlo study of double logarithms in the small x region
G. C, A. Sabio Vera
Phys.Rev. D93 (2016) no.7, 074004

The high-energy radiation pattern from BFKLex with double-log collinear contributions
G. C, A. Sabio Vera

JHEP 1602 (2016) 064



Back to the past once more

* Multiparticle production 50-60 years ago

* The emergence of the so-called multiperipheral models and
the concept of clusters in the 60s and 70s

* An important tool that comes from the past: two particle
correlations

e How do these old ideas fare in the QCD era and are they
useful at all?

e To answer that, go to a certain kinematical limit (multi-
Regge kinematics) and use Monte Carlo techniques
(BFKLeXx)



. . . So0me of the leading figures those days




~/0 years ago

Progress of Theoretical Physics, Vol. 5, No. 4, July~August, 1950

High Energy Nuclear Events

Enrico Fermi

Institute for Nuclear Studics
University of Chicago
Chicago, Illinois

(Received June 30, 1950)

Abstract

A statistical method for computing high energy collisions of protons with multiple productiomr
of particles is discussed. The method consists in assuming that as a result of fairly strong in'ter-
actiéns between nucleons and mesons the probabilities of formation of the various pos?1ble
numbers of particles are determined essentially by the statistical weights of the various possibilities.



~50 years ago

CORRELATIONS AND MULTIPLICITY DISTRIBUTIONS|IN
MULTIPARTICLE PRODUCTION

By M. LE BELLAC
University of Nice*
(Presented at the XIII Cracow School of Theoretical Physics, Zakopane, June 1-12, 1973)

A general discussion of Short Range Order hypothesis and its comparison with
experimental data on correlations in inclusive spectra is given.

1. Introduction

In the absence of a theory of strong interactions, one of the main purposes of the
present experiments on multiparticle production is to discover empirical regularities in
the experimental data, in the hope that these regularities will be useful later for a more
fundamental understanding of hadrodynamics. Some of these empirical regularities have




Chew, G. F., ‘Multiperipheralism and the Bootstrap,’
Comments on Nuclear and Particle Physics 2 (1968),
163—168.

Multiperipheralism and the Bootstrap

The adjective ‘“‘peripheral”’, when applied to hadronic reactions,
characterizes a correlation between large angular-momentum values
that produces a smooth and persistent momentum-transfer dependence
favoring small angles. The best-known example is the so called ‘‘forward

diffraction peak’ in elastic scattering, but almost all two-hadron
reactions have exhibited similar forward peaking, with widths in
momentum transfer that change only slowly with energy. The widths
vary from one reaction to another but usually are well below 0.5 GeV.
Although ‘‘peripheralism’ at first sight may seem an unsurprising

henomenon, close study has revealed profound theoretical implica-
tions that touch on the very origin of the hadrons. One crucial inference
is that multiple-production reactions should be “multiply-peripheral”.

18 NOte proposes brielly to survey multiperipneralism, vogecher wi
the related hypothesis of multi-Regge-poles. It will be seen that a new
class of bootstrap constraints is implied.



Sergio Fubini
Comments Nucl.Part.Phys. 4 (1970) 3, 102-106

Multiperipheral Model

Work in the multiperipheral model was started almost ten years ago.
It is pleasant to realize that the model in its different forms retains the
attention of many physicists and that some of its general predictions
seem to be in good agreement with experiment.!

Although a detailed study of the model requires a rather involved
mathematical apparatus, most of the main results can be understood in
a simple intuitive way.

The multiperipheral model is based on the idea that multiple produc-
tion at high energy is dominated by the graphs shown in Fig. 1.

»

Py
D
By

I

Po

Figure 1

The different versions of the model differ in the choice of what object
(particle, Regge poles---) corresponds to the peripheral lines of
momentum p,, py ** .



Notion of Clusters (70s

Progress of Theoretical Physics, Vol. 53, No. 3, March 1975

786 , S. Matsuda, K. Sasaki and T. Uematsu
c (Q) d
123 4 n-1 n
gM) gM,) e e gM) e g(My)
a b

zc =yc"yc-1
hard core with variable size as M,

our cluster emission model.

pzzA VA - « - PA V774 - (b) Rapidity space configuration

Z. of clusters with variable mass

M,. Each cluster has a hard
core of length 2 In(M./x).

2lng* Fig. 1 (a) Multiperipheral chain of
. | 777 J




HIgh energy scattering at
hadron colliders

The first hadron collider was the 1-km-circumference proton—proton (pp)
Intersecting Storage Rings (ISR),1 commissioned at CERN in 1971. Its beam
energies ranged from 12 to 31 GeV. V. Experiments at the ISR revealed the logarithmic
rise of the pp total scatterlng cross section at energies where it was expected to
have levelled off.

Ten years later, CERN’s Super Proton Synchrotron (SPS), until then a fixed-target
accelerator, became the SppS, a proton—antiproton collider with Ecm up to 630 GeV.
By the end of 1983, the collaborations that ran the large UA1 and UA2 detectors at
the collider’s beam-crossing points had discovered the heavy W+ and Z0 bosons
that mediate the weak interactions

Next, Fermilab’s pp Tevatron collider had a Ecm of 1.8 TeV; eventually it reached 2
TeV. 1995 top quark discovery

Currently: LHC era

https:/physicstoday.scitation.org/doi/10.1063/PT.3.2010



Multiperipheral models vs
perturbative QCD

* The key idea is to use an old multiperipheral model, namely the Chew-Pignotti
model (Phys.Rev. 176 ,1968) as used by DeTar (Phys. Rev. D, 3 1971) for multi-

jet final states at the LHC assuming that the jet multiplicity is fixed and rather
large and the total rapidity interval is large (similar to Mueller-Navelet jets).

* By jets in this context we really mean final state gluons before parton shower
and before hadronization
* Produce jet rapidity distributions and jet-jet rapidity correlations
* We then want to produce the same distributions with BFKLex and compare
the two approaches

A first comparison can be found in

Nucl.Phys.B 971 (2021) 115518, N. Bethencourt de Ledn, GC and A. Sabio Vera



Definition of the two-particle
rap|d|ty rapidity correlation function
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Rapidity distributions in the
Chew-Pignotti model

Single differential distribution

Double differential distribution

(I,m) N -l —m— m—1
Ponys  _ w3 =) —y) " (g £ 3)
dyrdyn, V-t (-m-1l  (m-1)

The key point in the Chew-Pignotti model is that longitudinal and
transverse degrees of freedom decouple.
One of the standard ways to show double differential distributions and
correlation functions is with contour plots



Kinematics

Consider events with fixed jet multiplicity N=3+2, 4+2, 5+2

Jets in the events must have a pT > 20 GeV to be considered, jets
with pT<20 GeV do not contribute to the jet multiplicity

The bounding jets (the most forward/backward jets) have 20<pT<30
GeV and 30<pT<40 GeV (and the reverse)

The jets can have rapidity y such that -4.7<y<4.7

The rapidity separation of the outermost jets was selected to be
3<AY<4 and in one case 3.9<AY<4

anti-kT with R=0.4 was used as implemented in fastjet

MSTW2008nnlo PDF (no particular reason, was used in MN studies)



An example with N=5 (3+2)

jet e rapidities of event i

jet e rapidities of event j

y1 y2 y3 y4 yS
o o o o (]




Shift the rapidities such that y1=0

jet e shifted rapidities of event i

jet e shifted rapidities of event j

y1 y2 y3 y4 yo
o o o o o
1 1
0 1 2 3 4 y
y1
y2 y3 y4 yo



0.00f

Rapidity distributions for N=5+2
3.9<AY<4
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Rapidity distributions for N=5+2
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Signhal and background distributions

o shifted rapidities of event i

o shifted rapidities of event j

y1 y2 y3 y4 yS
. ® ¢ "®
\ pair these two /
signal

pair these two

\background




binning the
Here we bin y2,y4 from .
the orange jets in the S | g Nna l

previous slide




Here we bin y2 from the blnnlng the

orange event and y4 from

the blue event two slides B aC kg roun d

ago.

1.0

0.5

0.0

0

We choose randomly as blue
event any event from
the dataset which has
the same multiplicity
as the orange event. The idea 4
is that y2 from one event
and y4 from another event
should not be correlated.



(y2.y3) signal distribution, N = 4+2




(y2,y3) background distribution
N = 4+2




Full-run for (y2,ys) correlation

N =4+2
__/ -

-1.0 -0.5 0 0.5 1.0

Chew-Pignotti I BFKLex I
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Partonic level run

Multiplicity 5+2 - Jet1 vs Jet 4

-1.0 -0.5 0 0.5 1.0

Multiplicity 5+2 — Jet1 vs Jet 3
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Mueller-Navelet jets
New Observables



Compare fixed order+parton shower
versus BFKL

e Use a process for which in principle resummation is
relevant. Here, dijet production (Mueller-Navelet jets).
These are jets widely separated in rapidity with similar pT
where also other jets are allowed at rapidities in between
the two bounding jets.

 Use BFKLex to calculate the BFKL prediction for a number
of exclusive observables.

* Use NLO matrix elements from POWHEG with Pythia
parton shower to calculate the prediction for the same
observables.



Kinematics

@ Cuts: DL .
PLOSISHOIGE | RN, SN W
P1n-1€ [20;30]GeV R 12 Al

y € [-4.7,4.7]

() tagged tagged 9.4 y
@ Maximize |yn—1— Yol in tagging

Important note: For the comparison, we fix the final jet multiplicity to take the values
N=5, 6,7

Figure from a talk by Mats Kampshoff



The high-energy radiation pattern from
BFKLex with double-log collinear

contributions

Introduce three quantities related to the jet activity along the
ladder. These characterize uniquely the event (but not fully).

Consider the following (and variations)

average p,

average azimuthal
angle

rapidity ratio between
subsequent jets

rapidity ratios weighted
with transverse momenta




[arbitrary units]

do
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ff
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QCD NLO POWHEG + Pythia, |n| =4.7, R = 0.5,
pr.1 € [30:40] GeV, pr., € [20:30] GeV, pr. mini = 20 GeV

Results
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[arbitrary units]

. do
Ot dR,dYdN

1

35|§ 0.5 A
°7 0.0

Results
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Results
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Results

QCD NLO POWHEG + Pythia, |n| <4.7, R = 0.5,
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