QCD and PDFs

We are pleased to inform you that the 2022 edition of the QCD@LHC conference will take place at IJCLab Orsay, France in the campus of Paris-Saclay University between 28th November and 2nd December **Orsay**, France in the campus of Paris-Saclay University between 28th November and 2nd December
2022. This will be an in-person event only and the registration and call for abstracts will open on 3rd August 2022 on: Dear all,

Dear all

These lectures will …

- explain main theoretical and experimental results leading to development of quantum chromodynamics (QCD) and outline its concepts
- teach you how to calculate scaling violations for parton distribution functions (PDFs)
- give a taste of rich phenomenology of PDFs

Plan of lectures:

- **Lecture 1**: The quark model, deep inelastic scattering (DIS), the parton model, main concepts of quantum chromodynamics (QCD)
- **Lecture 2**: Scaling violations in QCD, DGLAP evolution equations, factorization theorem
- **Lecture 3**: Phenomenology of proton, nucleus and photon PDFs

Literature:

- **Lecture 1**: Halzen, Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (1984); Kronfeld. Quigg, "Resource Letter: Quantum Chromodynamics", arXiv:1002.5032 [hep-ph]; Gross, Klempt et al. "50 Years of Quantum Chromodynamics", Eur. Phys. J C (2023) 1125
- **Lecture 2**: Dokshitzer, Diakonov, Troian, "Hard Processes in Quantum Chromodynamics", Phys. Rept. 58 (1980) 269; Sterman et al., "Handbook of perturbative QCD", Rev. Mod. Phys. 67 (1995) 157-248
- **Lecture 3**: Aschenauer, Thorne, Yoshida, "Structure functions", Review of Particle Physics, Particle Data Group; Nisius, Phys. Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049].

Collinear factorization in QCD (1/5) aar tactorization sizeable phase space for parton radiation is considered in company as \overline{R} In photoproduction, where the electron escapes detec- \mathbf{t} and \mathbf{t} and \mathbf{t}

• Collinear factorization in perturbative QCD has been proven for many hard (large scale) processes in lepton-hadron (Jefferson Lab, HERA, EIC, FCC-eh) and hadron-hadron (Tevatron, RHIC, LHC) scattering $\overline{\mathbf{u}}$ along the position the exchanged virtual virtual via \mathbf{v} pcesses in lepton-hadron (Jefferson Lab, HERA, EIC, I -hadron (Tevatron, RHIC, LHC) s transverse energy of the jets. The diagrams shown in $\mathbf s$ heen proven tor many to process where direct-photon events are classified as those $h_{\text{rel}}(x) = \alpha x + \beta$ is more to the general to the genera

Collinear factorization in QCD (2/5)

• Structure functions and cross sections are convolutions of PDFs with the coefficient functions or partonic cross sections.

• DIS:
$$
F_2(x, Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 d\xi C_i \left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) f_i(\xi, \mu^2)
$$

\nHadroproduction: $d\sigma(pp \to \dots) = \sum_{i=q,\bar{q},g} \int d\xi_A \int d\xi_B f_{A/p}(\xi_A, \mu^2) f_{B/p}(\xi_B, \mu^2) d\hat{\sigma}_{AB \to \dots}$

• The coefficient functions are process-specific and can be calculated orderby-order in perturbative QCD.

• Parton distribution functions (PDFs) are non-perturbative quantities:

$$
f_q(x, Q^2) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{-ixz^-p^+} \langle p | \bar{\psi}(x) \gamma^+ \psi(0) | p \rangle_{z^+ = z_\perp = 0}
$$

 $\bullet \rightarrow$ cannot be calculated from first principles (except for several first Mellin momenta calculated in lattice QCD, no access to interesting small-x region)

• can only be extracted from data taking advantage of universality of PDFs.

Collinear factorization in QCD (3/5) the context of the wide range of possible jet algorithms, are generally presented in the Breit frame (Feynman, $1972;$ Streng et al., 1979) in which the exchanged vira-

• Different processes access different combinations of PDFs. σ , σ , σ , σ

gluons are via \mathcal{Q}^2 scaling violations of $F_2(x,Q^2)$ + from longitudinal sf $F_L(x,Q^2)$

Drell-Yan process: probes \bar{q}

Jet production: probes $\frac{1}{2}$ is cannot diagrams of $\frac{1}{2}$ \rightarrow sensitivity to gluons proton. This is dominant at low Q2, where low-x partons both quarks and gluons at the same order of pQCD

• Neutral current and charged current (neutrino) DIS access different combinations of quarks \rightarrow can be used for flavor-separation of quark PDFs.

Collinear factorization in QCD (4/5) ation in CICII (4/5) which are primary participate \mathbf{r} range of *x* constrained by the data. This list expands as more processes

- Different processes access different combinations of PDFs.
- Scattering with fixed targets and in collider mode \rightarrow different regions of x.

Fixed targets

 $e^{\pm}p$ HERA

 $p\bar{p}$ at Tevatron and pp at LHC

Collinear factorization in QCD (5/5)

at large $\mathcal{Q}^2 \rightarrow$ DGLAP \mathcal{Q}^2 evolution connects low \mathcal{Q}^2_0 and \mathcal{Q}^2 regions. • These processes cover wide region on (x, \mathcal{Q}^2) plane \rightarrow sensitive to different combinations of PDFs: valence quarks at low \mathcal{Q}^2_0 and sea quarks and gluons

Global analysis of proton PDFs (1/2)

- Parton distributions (PDFs) are determined from statistical fitting of the available data \rightarrow called global QCD fits.
- State-of-the-art is NNLO accuracy \rightarrow ongoing work toward N³LO.
- Assume a form of PDFs at input scale $Q_0 \approx 1 2$ GeV: $xf_i(x, Q_0^2) = x^{a_i}(1-x)^{b_i}F(c_i, d_i, ...)$, where $a_i, b_i, ...$ are free parameters (typically, 14-32 free parameters).
- Use DGLAP evolution equation to calculate $xf_i(x, Q^2 > Q_0^2)$ at Q^2 of the experiment.
- Using the evolved $xf_i(x, Q^2)$, calculate observables, e.g., the structure function $F_2(x,Q^2)$, the Drell-Yan and dijet cross section, …
- Compare to the data and find the free parameters by minimizing the χ^2 function: $\chi^2 = \sum_i (D_i - T_i)(C^{-1})_{ij}(D_j - T_j)$ *i*,*j*

Global analysis of proton PDFs (2/2)

- Example: MSHT20 PDFs fitting ~5000 data points with $\chi^2/N_{\text{points}} \approx 1.2$, Bailey, Cridge, Harland-Lang, Martin, Thorn, Eur. Phys. J. C 81 (2021) 4, 341.
- The uncertainty bands from error PDFs using the Hessian method.
- \bullet Uncertainties decrease as Q^2 increases \to consequence of DGLAP evolution from large x to low x due parton splitting.

 \bullet Alternative fitting and shally you avoid hi. • Alternative fitting strategy to avoid input bias \rightarrow use neural networks (NNPDFs).

Nuclear parton distributions (1/4)

• Similarly to proton case, global QCD fits for nuclear PDFs, Klasen, Paukkunen, arXiv:2311.00450 [hep-ph] Table 1: Key features of recent global analyses of nuclear PDFs.

^a nCTEQ15HIX (26); ^b nCTEQ15 ν (112); ^c through CT18A; ^d only π^0 in DAu; ^e only forward ($\nu > 0$).

Nuclear parton distributions (2/4) data and dilepton (Drell-Yan) and pion production from proton-nucleus, and most recently also

- $f(x) = \sqrt{a^2 + 1 + 1}$ • While $\sqrt{Q^2}$ >> nuclear binding energy, $f_{i/A}(x,Q^2) \neq Zf_{i/p}(x,Q^2) + (A-Z)f_{i/n}(x,Q^2)$ $f_{\mu}(\chi, Q^2)$ • Nuclear modification factor: $R_i^A(x, Q^2) = \frac{J_i(A(x, Q^2)}{Zf_{i/n}(x, Q^2) + (A - Z)f_{i/n}(x, Q^2)}$ $f_{i/A}(x,Q^2)$
- $2f_{ilp}$ $y_p(x, Q^2) + (A - Z) f_{i/n}(x, Q^2)$ • Nuclear shadowing ($x < 0.05$), nuclear anti-shadowing ($x \approx 0.1$), EMC effect $(0.2 < x < 0.7)$, Fermi motion $(x > 0.7) \rightarrow$ there are also quarks with $x_A > 1$. $Zf_{i/p}(x, Q^2) + (A - Z)f_{i/n}(x, Q^2)$

Nuclear parton distributions (3/4)

- How can one better determine nuclear PDFs?
- The planned Electron-Ion Collider at Brookhaven National Lab in USA:
	- − wide $x Q^2$ coverage
- measurements of longitudinal $F_L^A(x, Q^2)$ directly sensitive to nuclear gluons
	- first ever measurement of nuclear diffractive structure functions

Nuclear parton distributions (4/4) U and photon-nuclear interactions: photon-nuclear interactions: photon-nuclear interactions: photon-nuclear interactions: U \mathbf{U} μ) photoproduction directly photoproduction directly probes gluonic structure probes gluonic structure. of nucleus and nucleon. Δ in polynomial Δ in photon flux Δ Δ (Δ) Δ

• Nuclear PDFs can be constrained in ultraperipheral collisions (UPCs) of heavy ions at LHC and RHIC.

Incoherent production:

 ρ , J/ ψ ,

b≫R_A+R_B

Photon PDFs (1/7)

- In QCD, the photon plays a dual role:
	- interacts directly with charged particles
	- interacts through fluctuations into $q\bar{q}$ pairs and vector mesons:

 $|\gamma\rangle = |\gamma\rangle_{\text{bare}} + \text{coeff}|q\bar{q}\rangle + g_{\rho}|\rho\rangle + ...$

 $\mathcal{F}_{\mathcal{A}}$ appearances of the photon. Shown are (a) the photon. Shown are (a) the direct or direct or direct or • Hadronic fluctuations in the form of vector mesons \rightarrow vector meson dominance (VMD) model confirmed in $γp$ scattering and e^+e^- annihilation: For the production of quark pairs the situation is more complex, since the

Photon PDFs (2/7)

e

e

 γ^*

 γ

e

X

• Similarly to the proton case, the partonic structure of the photon hadronic component using DIS on photon in *e*⁺*e*[−] annihilation.

• Very different from the behavior of the proton $F_2(x, Q^2)$. **2 (x) /** < **Q2** > **= 41. GeV2**

Photon PDFs (3/7)

• In the quark parton model (QPM), one calculates $F_2^{\gamma}(x,Q^2)$ through the 'box' diagram (note we can restore its logarithmic term by recalling the gluon-quark splitting function *Pqg*(*z*)

$$
\frac{F_2^{\gamma}(x)}{x} = \frac{N_c \alpha_{\text{e.m.}}}{\pi} \sum_q e_q^4 \left\{ (x^2 + (1-x)^2) \ln \left(\frac{Q^2}{m_q^2} \frac{1-x}{x} \right) + 8x(1-x) - 1 \right\}
$$

• In contrast to proton, $F_2^{\gamma}(x, Q^2)$ manifests strong scaling violations, even without gluon radiation \rightarrow scaling violations are positive for all x.

• Another difference is the **x** dependence: $F_2^{\gamma}(x,Q^2)$ increases and does not go to 0 as $x \to 1$.

• No Callan-Gross relation: $F_L^{\gamma} = F_2^{\gamma}(x) - 2xF_1^{\gamma}(x) \neq 0$

Photon PDFs (4/7)

• Similarly to proton, one can calculate corrections to the quark parton model due to parton emission \rightarrow modified DGLAP evolution equations:

$$
Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} f_q^{\gamma}(x, Q^2) \\ f_g^{\gamma}(x, Q^2) \end{pmatrix} = \frac{\alpha_{\text{e.m.}}}{2\pi} \begin{pmatrix} k_q & 0 \\ 0 & k_g \end{pmatrix} \otimes \begin{pmatrix} f_q^{\gamma}(Q^2) \\ f_g^{\gamma}(Q^2) \end{pmatrix} + \frac{\alpha_s}{2\pi} \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_q^{\gamma}(Q^2) \\ f_g^{\gamma}(Q^2) \end{pmatrix}
$$

• In addition to qq , qg , gq and gg splittings, there is a *γ* → *q* \bar{q} splitting → inhomogeneous term in the evolution equations: $k_q = 3n_f \langle e^2 \rangle 2(x^2 + (1 - x)^2) + \mathcal{O}(\alpha_s)$

 \bullet The gluon $k_{\stackrel{\ }{g}}= \mathscr{O}(\alpha_{\stackrel{\ }{s}})$

• The $\gamma \to q\bar{q}$ splitting also contributes to the $F_2^{\gamma}(x, Q^2)$ structure function calculated in factorization framework:

$$
F_2^{\gamma}(x, Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 d\xi C_i \left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) f_i^{\gamma}(\xi, \mu^2) + \frac{\alpha_{e.m.}}{4\pi} 3n_f \langle e_q^4 \rangle B_{\gamma}(x), \text{ where}
$$

$$
B_{\gamma}(x) = 4 \left[(x^2 + (1-x)^2) \ln \left(\frac{1-x}{x} \right) - 1 + 8x(1-x) \right]
$$

Photon PDFs (5/7)

• One can present the solution of the evolution equations as $f^\gamma_i(x,Q^2) = f^\gamma_{i,\text{pl}}(x,Q^2) + q^\gamma_{i,\text{had}}(x,Q^2)$, but it is impractical because $B_\gamma < 0$ for large x.

• To avoid numerical instabilities in global QCD analyses of photon PDFs, absorb the point-like contribution into the definition of PDFs \rightarrow DIS_Y factorization scheme:

$$
(q^{\gamma}(x) + \bar{q}^{\gamma}(x))_{\text{DIS}_{\gamma}} = (q^{\gamma}(x) + \bar{q}^{\gamma}(x))_{\overline{\text{MS}}} + e_q^2 \frac{3\alpha}{4\pi} B_{\gamma}(x) ,
$$

$$
g^{\gamma}(x)_{\text{DIS}_{\gamma}} = g^{\gamma}(x)_{\overline{\text{MS}}}
$$

• In this scheme, $F_2^{\gamma}(x, Q^2)$ has the form of proton $F_2(x, Q^2) \rightarrow$ one can use machinery of global QCD fits developed for proton.

 \bullet Like in proton case, momentum sum rule, but it depends on \mathcal{Q}^2 \rightarrow ∫ 1 0 $dxx \mid \sum$ *q* $f_q^{\gamma}(x, Q^2) + f_g^{\gamma}(x, Q^2) + f_{\gamma/\gamma}(x, Q^2) = 1$ ∫ 1 0 *dxx* ∑ *q* $f_q^{\gamma}(x, Q^2) + f_g^{\gamma}(x, Q^2) =$ *α*e.m. *π* ∑ *q* $e_q^2 \log(Q^2/4 \text{ GeV}^2)$

Photon PDFs (6/7)

• Global QCD fits to $F_2^{\gamma}(x, Q^2)$ data \rightarrow photon PDFs at NLO accuracy, Nisius, Phys. *Fort 322 (2000)* 465 247 [27² in *R*₂ 2004)</sub> *Comet RRD 70 (2004)* 202004

Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049; Cornet, Jankowski, Krawczyk, PRD 70 (2004) 093004.

direction of the income Photon PDFs (7/7) in a subset of events short distance processes occur which involve a hard scatter and the

• Photon PDFs for the resolved-photon contribution for dijet photoproduction in ep scattering HERA \rightarrow also in UPCs at LHC and eA scattering at EIC. parton in the proton; this is called the resolved process. p are calculated to next-to-leading order in \mathcal{L}

HERA dijet photoproduction

Instead of Summary (1/2) and thus are genuinely quantum-mechanical interference terms. In region (b) they con

• With these lectures, I just scratched the surface of a vast and active field of PDFs in QCD. The field is evolving in three directions: \bullet vith these lectures. Liust scratch the rich physics content of GPDs in a content of the considerable considerable considerable considerable consi τ theoretical ideas will have to be tested against the constraints from data. The constraints from data.

- **Precision**: work toward N³LO global QCD fits, use of neural networks, and elaborate methods of statistical analysis. which are very similar to those for inclusive processes such as DIS or Drell–Yan pair production. The
- **Imaging**: generalized parton distributions (GPDs) from deeply virtual Compton scattering (DVCS) and exclusive meson production \rightarrow GPDs contain info on elastic form factors and PDFs \rightarrow 3D image of the nucleon/nucleus. **c** maging. generalized parton dist $t_{\rm coll}$ universality of the computations of $t_{\rm cl}$ and σ into on elastic form factors and $\mathsf{P}\mathsf{D}\mathsf{r}\mathsf{s}\to\mathsf{D}\mathsf{D}$ infage on b

Instead of Summary (2/2)

• **Inclusion of elements of BFKL physics.** E.g., small-x resummation in coefficient functions and parton splitting function in global QCD fits of proton PDFs → extension of applicability for low x, Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli, EPJ C (2018) 78:321

