QCD and **PDFs**

We are pleased to inform you that the 2022 edition of the QCD@LHC conference will take place at IJCLab Orsay, France in the campus of Paris-Saclay University between 28th November and 2nd December 2022. This will be an in-person event only and the registration and call for abstracts will open on 3rd August 2022 on

These lectures will ...

- explain main theoretical and experimental results leading to development of quantum chromodynamics (QCD) and outline its concepts
- teach you how to calculate scaling violations for parton distribution functions (PDFs)
- give a taste of rich phenomenology of PDFs

Plan of lectures:

- Lecture 1: The quark model, deep inelastic scattering (DIS), the parton model, main concepts of quantum chromodynamics (QCD)
- Lecture 2: Scaling violations in QCD, DGLAP evolution equations, factorization theorem
- Lecture 3: Phenomenology of proton, nucleus and photon PDFs

Literature:

- Lecture 1: Halzen, Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (1984); Kronfeld. Quigg, "Resource Letter: Quantum Chromodynamics", arXiv:1002.5032 [hep-ph]; Gross, Klempt et al. "50 Years of Quantum Chromodynamics", Eur. Phys. J C (2023) 1125
- Lecture 2: Dokshitzer, Diakonov, Troian, "Hard Processes in Quantum Chromodynamics", Phys. Rept. 58 (1980) 269; Sterman et al., "Handbook of perturbative QCD", Rev. Mod. Phys. 67 (1995) 157-248
- Lecture 3: Aschenauer, Thorne, Yoshida, "Structure functions", Review of Particle Physics, Particle Data Group; Nisius, Phys. Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049].

Collinear factorization in QCD (1/5)

• Collinear factorization in perturbative QCD has been proven for many hard (large scale) processes in lepton-hadron (Jefferson Lab, HERA, EIC, FCC-eh) and hadron-hadron (Tevatron, RHIC, LHC) scattering

Collinear factorization in QCD (2/5)

• Structure functions and cross sections are convolutions of PDFs with the coefficient functions or partonic cross sections.

• DIS:
$$F_2(x, Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 d\xi C_i\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) f_i(\xi, \mu^2)$$

• Hadroproduction: $d\sigma(pp \to ...) = \sum_{i=q,\bar{q},g} \int d\xi_A \int d\xi_B f_{A/p}(\xi_A, \mu^2) f_{B/p}(\xi_B, \mu^2) d\hat{\sigma}_{AB \to ...}$

- The coefficient functions are process-specific and can be calculated orderby-order in perturbative QCD.
- Parton distribution functions (PDFs) are non-perturbative quantities:

$$f_q(x, Q^2) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{-ixz^- p^+} \langle p \,| \,\bar{\psi}(x) \gamma^+ \psi(0) \,| \, p \rangle_{z^+ = \mathbf{z}_\perp = 0}$$

- \rightarrow cannot be calculated from first principles (except for several first Mellin momenta calculated in lattice QCD, no access to interesting small-x region)
- can only be extracted from data taking advantage of universality of PDFs.

Collinear factorization in QCD (3/5)

• Different processes access different combinations of PDFs.

Inclusive DIS: probes q + q, gluons are via Q^2 scaling violations of $F_2(x, Q^2)$ + from longitudinal sf $F_L(x, Q^2)$

Drell-Yan process: probes \bar{q}

Jet production: probes both quarks and gluons at the same order of pQCD \rightarrow sensitivity to gluons

• Neutral current and charged current (neutrino) DIS access different combinations of quarks \rightarrow can be used for flavor-separation of quark PDFs.

Collinear factorization in QCD (4/5)

- Different processes access different combinations of PDFs.
- Scattering with fixed targets and in collider mode \rightarrow different regions of x.

Fixed targets

 $e^{\pm}p$ HERA

 $p\bar{p}$ at Tevatron and pp at LHC

Process	Subprocess	Partons	x range	
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q,ar q,g	$x \gtrsim 0.01$	
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^*d/u\to d/u$	d/u	$x \gtrsim 0.01$	
$pp \to \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \to \gamma^*$ \bar{q}		$0.015 \lesssim x \lesssim 0.35$	
$pn/pp \to \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u})\to\gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$	
$\nu(\bar{\nu}) N \to \mu^-(\mu^+) X$	$W^*q \to q'$	q,ar q	$0.01 \lesssim x \lesssim 0.5$	
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$	
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$	
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	g,q,ar q	$10^{-4} \lesssim x \lesssim 0.1$	
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d,s	$x\gtrsim 0.01$	
$e^{\pm}p \rightarrow e^{\pm} c \bar{c} X, e^{\pm} b \bar{b} X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	c,b,g	$10^{-4} \lesssim x \lesssim 0.01$	
$e^{\pm}p \rightarrow \text{jet}+X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$	
$p\bar{p}, pp \rightarrow \text{jet(dijet)} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.00005 \lesssim x \lesssim 0.5$	
$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) X$	$ud \to W^+, \bar{u}\bar{d} \to W^-$	$u,d,s,\bar{u},\bar{d},\bar{s}$	$x \gtrsim 0.05$	
$pp \to (W^{\pm} \to \ell^{\pm} \nu) X$	$u\bar{d} \to W^+, d\bar{u} \to W^-$	$u,d,s,\bar{u},\bar{d},\bar{s},g$	$x \gtrsim 0.001$	
$p\bar{p}(pp) \to (Z \to \ell^+ \ell^-)X$	$uu,dd,(u\bar{u},)\to Z$	u,d,s,(g)	$x \gtrsim 0.001$	
$pp \to W^-c, \ W^+\bar{c}$	$gs ightarrow W^-c$	s, \overline{s}	$x \sim 0.01$	
$pp \to (\gamma^* \to \ell^+ \ell^-) X$	$u\bar{u}, d\bar{d}, \ldots \to \gamma^*$	$ar{q},g$	$x\gtrsim 10^{-5}$	
$pp \to (\gamma^* \to \ell^+ \ell^-) X$	$u\gamma, d\gamma, \ldots \to \gamma^*$	γ	$x\gtrsim 10^{-2}$	
$pp \rightarrow b\bar{b} X, \ t\bar{t} X$	$gg ightarrow b ar{b}, \ t ar{t}$	g	$x\gtrsim 10^{-5}, 10^{-2}$	
$pp \to t(\bar{t}) X,$	$bu(\bar{b}d) \to td(\bar{t}u)$	b, d/u	$x\gtrsim 10^{-2}$	
$pp \rightarrow$ exclusive $J/\psi, \Upsilon$	$\gamma^*(gg)\to J/\psi,\Upsilon$	g	$x\gtrsim 10^{-5}, 10^{-4}$	
$pp \to \gamma X$	$gq \to \gamma q, g\bar{q} \to \gamma \bar{q}$	g	$x \gtrsim 0.005$	

Collinear factorization in QCD (5/5)

• These processes cover wide region on (x, Q^2) plane \rightarrow sensitive to different combinations of PDFs: valence quarks at low Q_0^2 and sea quarks and gluons at large $Q^2 \rightarrow \text{DGLAP } Q^2$ evolution connects low Q_0^2 and Q^2 regions.

Global analysis of proton PDFs (1/2)

- Parton distributions (PDFs) are determined from statistical fitting of the available data \rightarrow called global QCD fits.
- State-of-the-art is NNLO accuracy \rightarrow ongoing work toward N³LO.
- Assume a form of PDFs at input scale $Q_0 \approx 1 2$ GeV: $xf_i(x, Q_0^2) = x^{a_i}(1 - x)^{b_i}F(c_i, d_i, ...)$, where $a_i, b_i, ...$ are free parameters (typically, 14-32 free parameters).
- Use DGLAP evolution equation to calculate $xf_i(x, Q^2 > Q_0^2)$ at Q^2 of the experiment.
- Using the evolved $xf_i(x, Q^2)$, calculate observables, e.g., the structure function $F_2(x, Q^2)$, the Drell-Yan and dijet cross section, ...
- Compare to the data and find the free parameters by minimizing the χ^2 function: $\chi^2 = \sum_{i,j} (D_i - T_i)(C^{-1})_{ij}(D_j - T_j)$

Global analysis of proton PDFs (2/2)

- Example: MSHT20 PDFs fitting ~5000 data points with $\chi^2/N_{\text{points}} \approx 1.2$, Bailey, Cridge, Harland-Lang, Martin, Thorn, Eur. Phys. J. C 81 (2021) 4, 341.
- The uncertainty bands from error PDFs using the Hessian method.
- Uncertainties decrease as Q^2 increases \rightarrow consequence of DGLAP evolution from large x to low x due parton splitting.

• Alternative fitting strategy to avoid input bias \rightarrow use neural networks (NNPDFs).

Nuclear parton distributions (1/4)

• Similarly to proton case, global QCD fits for nuclear PDFs, Klasen, Paukkunen, arXiv:2311.00450 [hep-ph]

Table 1: Key features of recent global analyses of nuclear PDFs.

Analysis	nCTEQ15HQ (50)	EPPS21 (51)	nNNPDF3.0 (52)	TUJU21 (78)	KSASG20 (79)
THEODETICAL INDUT:		()	()	. ,	()
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT - \gamma$	$SACOT - \gamma$	FONLL	FONLL	FONLL
Value of $\alpha_s(M_Z)$	0.118	0.118	0.118	0.118	0.118
Charm mass m_c	1.3 GeV	1.3 GeV	1.51 GeV	1.43 GeV	1.3 GeV
Bottom mass m_b	$4.5{ m GeV}$	$4.75\mathrm{GeV}$	$4.92{ m GeV}$	$4.5{ m GeV}$	$4.75\mathrm{GeV}$
Input scale Q_0	$1.3{ m GeV}$	$1.3{ m GeV}$	$1.0{ m GeV}$	$1.3{ m GeV}$	$1.3{ m GeV}$
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Parameterization	Analytic	Analytic	Neural network	Analytic	Analytic
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Proton PDF correlations		\checkmark	\checkmark		
Deuteron corrections	$(\checkmark)^{a,b}$	\checkmark^{c}	\checkmark	\checkmark	\checkmark
Fixed-target data:					
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$-\operatorname{Cut}$ on Q^2	4 GeV^2	$1.69 \ { m GeV^2}$	$3.5 \ {\rm GeV^2}$	$3.5 \ {\rm GeV^2}$	$1.2 \ {\rm GeV^2}$
$-$ Cut on W^2	$12.25 \ { m GeV^2}$	$3.24~{ m GeV^2}$	$12.5 \ { m GeV^2}$	$12.0 \ { m GeV^2}$	
JLab NC DIS	$(\checkmark)^a$	\checkmark			\checkmark
CHORUS/CDHSW CC DIS	$(\checkmark/-)^b$	√/-	√/-	\checkmark/\checkmark	\checkmark/\checkmark
NuTeV/CCFR 2μ CC DIS	$(\checkmark/\checkmark)^b$		√/-		
pA DY	\checkmark	\checkmark	\checkmark		\checkmark
πA DY		\checkmark			
Collider data:					
Z bosons	\checkmark	\checkmark	\checkmark	\checkmark	
W^{\pm} bosons	\checkmark	\checkmark	\checkmark	\checkmark	
Light hadrons	\checkmark	\checkmark^d			
$-\operatorname{Cut}$ on p_T	$3 { m GeV}$	$3 { m GeV}$			
Jets		\checkmark	\checkmark		
Prompt photons			\checkmark		
Prompt D^0	\checkmark	\checkmark	\sqrt{e}		
$-\operatorname{Cut}$ on p_T	$3 { m GeV}$	$3~{\rm GeV}$	$0~{\rm GeV}$		
Quarkonia $(J/\psi, \psi', \Upsilon)$	\checkmark				

^a nCTEQ15HIX (26); ^b nCTEQ15 ν (112); ^c through CT18A; ^d only π^0 in DAu; ^e only forward (y > 0).

Nuclear parton distributions (2/4)

- While $\sqrt{Q^2}$ >> nuclear binding energy, $f_{i/A}(x, Q^2) \neq Zf_{i/p}(x, Q^2) + (A Z)f_{i/n}(x, Q^2)$ • Nuclear modification factor: $R_i^A(x, Q^2) = \frac{f_{i/A}(x, Q^2)}{Zf_{i/p}(x, Q^2) + (A - Z)f_{i/n}(x, Q^2)}$
- Nuclear shadowing (x < 0.05), nuclear anti-shadowing ($x \approx 0.1$), EMC effect (0.2 < x < 0.7), Fermi motion (x > 0.7) \rightarrow there are also quarks with $x_A > 1$.

Nuclear parton distributions (3/4)

- How can one better determine nuclear PDFs?
- The planned Electron-Ion Collider at Brookhaven National Lab in USA:
 - wide $x Q^2$ coverage
 - measurements of longitudinal $F_L^A(x, Q^2)$ directly sensitive to nuclear gluons
 - first ever measurement of nuclear diffractive structure functions

Nuclear parton distributions (4/4)

• Nuclear PDFs can be constrained in ultraperipheral collisions (UPCs) of heavy ions at LHC and RHIC.

 ρ , J/ ψ ,

b≫R₄+R_B

Photon PDFs (1/7)

- In QCD, the photon plays a dual role:
 - interacts directly with charged particles
 - interacts through fluctuations into $q\bar{q}$ pairs and vector mesons:

 $|\gamma\rangle = |\gamma\rangle_{\text{bare}} + \text{coeff} |q\bar{q}\rangle + g_{\rho} |\rho\rangle + \dots$

• Hadronic fluctuations in the form of vector mesons \rightarrow vector meson dominance (VMD) model confirmed in γp scattering and e^+e^- annihilation:

Photon PDFs (2/7)

• Similarly to the proton case, the partonic structure of the photon hadronic component using DIS on photon in e^+e^- annihilation.

• Very different from the behavior of the proton $F_2(x, Q^2)$.

e

e

X

e

Photon PDFs (3/7)

• In the quark parton model (QPM), one calculates $F_2^{\gamma}(x, Q^2)$ through the 'box' diagram (note we can restore its logarithmic term by recalling the gluon-quark splitting function $P_{qg}(z)$

$$\frac{F_2^{\gamma}(x)}{x} = \frac{N_c \alpha_{\text{e.m.}}}{\pi} \sum_q e_q^4 \left\{ (x^2 + (1-x)^2) \ln\left(\frac{Q^2}{m_q^2} \frac{1-x}{x}\right) + 8x(1-x) - 1 \right\}$$

• In contrast to proton, $F_2^{\gamma}(x, Q^2)$ manifests strong scaling violations, even without gluon radiation \rightarrow scaling violations are positive for all x.

• Another difference is the x dependence: $F_2^{\gamma}(x, Q^2)$ increases and does not go to 0 as $x \rightarrow 1$.

• No Callan-Gross relation: $F_L^{\gamma} = F_2^{\gamma}(x) - 2xF_1^{\gamma}(x) \neq 0$

Photon PDFs (4/7)

 Similarly to proton, one can calculate corrections to the quark parton model due to parton emission → modified DGLAP evolution equations:

$$Q^{2} \frac{\partial}{\partial Q^{2}} \begin{pmatrix} f_{q}^{\gamma}(x, Q^{2}) \\ f_{g}^{\gamma}(x, Q^{2}) \end{pmatrix} = \frac{\alpha_{\text{e.m.}}}{2\pi} \begin{pmatrix} k_{q} & 0 \\ 0 & k_{g} \end{pmatrix} \otimes \begin{pmatrix} f_{q}^{\gamma}(Q^{2}) \\ f_{g}^{\gamma}(Q^{2}) \end{pmatrix} + \frac{\alpha_{s}}{2\pi} \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{q}^{\gamma}(Q^{2}) \\ f_{g}^{\gamma}(Q^{2}) \end{pmatrix}$$

• In addition to qq, qg, gq and gg splittings, there is a $\gamma \rightarrow q\bar{q}$ splitting \rightarrow inhomogeneous term in the evolution equations: $k_q = 3n_f \langle e^2 \rangle 2(x^2 + (1-x)^2) + \mathcal{O}(\alpha_s)$

• The gluon
$$k_g = \mathcal{O}(\alpha_s)$$

• The $\gamma \rightarrow q\bar{q}$ splitting also contributes to the $F_2^{\gamma}(x, Q^2)$ structure function calculated in factorization framework:

$$F_{2}^{\gamma}(x,Q^{2}) = \sum_{i=q,\bar{q},g} \int_{x}^{1} d\xi C_{i} \left(\frac{x}{\xi},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) f_{i}^{\gamma}(\xi,\mu^{2}) + \frac{\alpha_{\text{e.m.}}}{4\pi} 3n_{f} \langle e_{q}^{4} \rangle B_{\gamma}(x), \text{ where}$$
$$B_{\gamma}(x) = 4 \left[(x^{2} + (1-x)^{2}) \ln\left(\frac{1-x}{x}\right) - 1 + 8x(1-x) \right]$$

Photon PDFs (5/7)

• One can present the solution of the evolution equations as $f_i^{\gamma}(x, Q^2) = f_{i,\text{pl}}^{\gamma}(x, Q^2) + q_{i,\text{had}}^{\gamma}(x, Q^2)$, but it is impractical because $B_{\gamma} < 0$ for large x.

0

• To avoid numerical instabilities in global QCD analyses of photon PDFs, absorb the point-like contribution into the definition of PDFs $\rightarrow DIS\gamma$ factorization scheme:

$$\begin{aligned} (q^{\gamma}(x) + \bar{q}^{\gamma}(x))_{\text{DIS}_{\gamma}} &= (q^{\gamma}(x) + \bar{q}^{\gamma}(x))_{\overline{\text{MS}}} + e_q^2 \frac{3\alpha}{4\pi} B_{\gamma}(x) \quad , \\ g^{\gamma}(x)_{\text{DIS}_{\gamma}} &= g^{\gamma}(x)_{\overline{\text{MS}}} \end{aligned}$$

• In this scheme, $F_2^{\gamma}(x, Q^2)$ has the form of proton $F_2(x, Q^2) \rightarrow$ one can use machinery of global QCD fits developed for proton.

• Like in proton case, momentum sum rule, but it depends on Q^2 $\int_0^1 dxx \left[\sum_q f_q^{\gamma}(x, Q^2) + f_g^{\gamma}(x, Q^2) + f_{\gamma/\gamma}(x, Q^2) \right] = 1 \rightarrow$ $\int_0^1 dxx \left[\sum_q f_q^{\gamma}(x, Q^2) + f_g^{\gamma}(x, Q^2) \right] = \frac{\alpha_{\text{e.m.}}}{\pi} \sum_q e_q^2 \log(Q^2/4 \text{ GeV}^2)$

Photon PDFs (6/7)

• Global QCD fits to $F_2^{\gamma}(x, Q^2)$ data \rightarrow photon PDFs at NLO accuracy, Nisius, Phys.

Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049; Cornet, Jankowski, Krawczyk, PRD 70 (2004) 093004.

Photon PDFs (7/7)

• Photon PDFs for the resolved-photon contribution for dijet photoproduction in *ep* scattering HERA \rightarrow also in UPCs at LHC and *eA* scattering at EIC.

HERA dijet photoproduction

Instead of Summary (1/2)

• With these lectures, I just scratched the surface of a vast and active field of PDFs in QCD. The field is evolving in three directions:

- Precision: work toward N³LO global QCD fits, use of neural networks, and elaborate methods of statistical analysis.
- **Imaging**: generalized parton distributions (GPDs) from deeply virtual Compton scattering (DVCS) and exclusive meson production \rightarrow GPDs contain info on elastic form factors and PDFs \rightarrow 3D image of the nucleon/nucleus.

Instead of Summary (2/2)

• Inclusion of elements of BFKL physics. E.g., small-x resummation in coefficient functions and parton splitting function in global QCD fits of proton PDFs \rightarrow extension of applicability for low X, Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli, EPJ C (2018) 78:321

