Plan for the course

Lecture 1: big picture

- Why jets?
- $\gamma^* \rightarrow q\bar{q}g$: singularity structure
- Resummation and parton showers

Lecture 2: jet algorithms • Core ideas of jet reconstruction • Sequential recombination algorithms • Optimising jet parameters

Lecture 3: jet substructure

- The question of flavour
-
- Observables at the LHC

• Calculability: groomed jet mass

How to define jet flavour? And why is it important?

Is it a quark or a gluoninduced jet?

Relevant for e.g. organising matching to resummation

Light flavour Heavy flavour

Possible to address at fixed-order

Is it a heavy-quark initiated jet? Exp definition

An (anti- k_t) jet is flavoured if it *contains at least one heavy hadron* $within \ \Delta R < R$ with $p_t > p_{t,\mathrm{cut}}$

Critical to address calculability for robust theory-to-data comparisons

Importance of jet flavour algo for matching NkLO and NkLL

 Combining fixed-order and resummation calculations, e.g. I Sun Ner Bon couns Bon coupp

Need procedure to assign $q\bar{q}g$ final-state to $q\bar{q} \rightarrow q\bar{q}$ Born, e.g.

Flavour = $|n_q - n_{\bar{1}}|$ = jet $\frac{1}{4}$ μ m = $\frac{1}{4}$ = $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 Combining fixed-order and resummation calculations, e.g.I Sun der Bon connel \overline{P} Bon coupp

Need procedure to assign $q\bar{q}g$ final-state to $q\bar{q} \rightarrow q\bar{q}$ Born, e.g.

Flavour = $|n_q - n_{\bar{1}}|$ = jet $\frac{1}{4}$ μ bv = 0
jut ℓ μ lov = 0 $\Rightarrow \overline{f} \overline{f} \rightarrow \overline{g} \overline{f}$

Importance of jet flavour algo for matching NkLO and NkLL

Problem! Again IRC unsafety

Arbitrarily soft $g \rightarrow q\bar{q}$ changes flavour

 Combining fixed-order and resummation calculations, e.g.I Sun Ner Bon couns O O P Bon coupp

Importance of jet flavour algo for matching NkLO and NkLL

Modify metric to reflect soft quark divergences

 Combining fixed-order and resummation calculations, e.g.I Sun Ner Bon couns Bon coupp q

Original solution: flavour k_t algorithm (for ee) [Banfi et al [Eur.Phys.J.C 47 \(2006\) 113-124\]](https://inspirehep.net/literature/708784) $dy = 2(1-c_0)\theta_{ij}$ \times $\begin{cases} \frac{1}{2} \pi x(E_i, E_j^2) & \text{for } y \neq -1, 0 \ 0 & \text{for } j \end{cases}$ P x max (2, 1-2)
(no soft due kno) Clera

Importance of jet flavour algo for matching NkLO and NkLL

 Combining fixed-order and resummation calculations, e.g.I Sun der Ban connel Bon coupp

Original solution: flavour k_t algorithm in action

Importance of jet flavour algo for matching NkLO and NkLL

[Caola et al [Phys.Rev.D 108 \(2023\) 9, 094010](https://inspirehep.net/literature/2668331)]

Also, LHC experiments like anti- $k_{\rm t}$ jets

cluster tirst with $|f|^{|\alpha|} = 0$. Then cluster with $g \propto \overline{p}$

IRC safe in e^+e^- (issues at $\mathcal{O}(\alpha_s^3)$ for pp). e^+e^- (*issues at* $O(\alpha_s^3)$ $\binom{3}{s}$

Issues with h

[Discussion based on R. Gauld et al [Phys.Rev.Lett. 130 \(2023\) 16, 161901](https://inspirehep.net/literature/2141281), [Eur. Phys. J. C \(2023\) 83:336\]](https://inspirehep.net/literature/2636774)

An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_t > p_{t,\rm cut}$

An (anti- k_t) jet is flavoured if it contains at **least one heavy hadron** $within \Delta R < R$ with within $\Delta R < R$ with $p_t > p_{t,\text{cut}}$

- Problem: $g \rightarrow q\bar{q}$ is flavoured even in the collinear limit.
- Solution: consider flavour jet to have odd number of *q* and \bar{q}

An (anti- k_t) jet is flavoured if it contains at **least one heavy hadron** $within \Delta R < R$ with within $\Delta R < R$ with $p_t > p_{t, \text{cut}}$

- Problem: collinear $q \rightarrow qg$ might make the heavy-quark fall below the $p_{t,\mathrm{cut}}$.
- Solution: introduce a fragmentation function

- Problem: soft, large-angle $g \rightarrow q\bar{q}$ pollutes the flavour of other jets
- Solution: none within a flavour agnostic jet algorithm

within $\Delta R < R$ with $p_t > p_{t,\text{cut}}$ An (anti- k_t) jet is flavoured if it contains at **least one heavy hadron**

An (anti- k_t) jet is flavoured if it contains at least one heavy hadron $within \ \Delta R \ \leq R \ with \ p_t > p_{t,\text{cut}}$ p_{ℓ} $p_{\bar\ell}$ $p_{\bar\ell}$ p_{ℓ} \wedge $\boldsymbol{\wedge}$ σ σ p_{q} $p_{\bar{q}}$ p_g $p_{\bm{q}}$

within $\Delta R < R$ with $p_t > p_{t,cut}$

$T = T$ Several solutions are now available. Check <https://github.com/jetflav>

An (anti-k_t) jet is flavoured if it contains at least one heavy hadron

best QCD (including EW corrections) over / orders of magnitude Test QCD (including EW corrections) over 7 orders of magnitude

$m_{1,2}$ (GeV) Figure 8: Differential dif $\alpha_s(M_Z) = 0.1179 \pm 0.0019$

What to do with anti- k_t jets?

What to do with anti- k_t jets? Discover resonances

Boosted object reconstruction ($\sqrt{s} \gg E_{\text{EW}}$)

LHC energies (104 GeV) >> electroweak scale (102 GeV)

1

Highly Lorentz-boosted resonances end up reconstructed as a single, large-R jet

z(1 − *z*) M_X *pT*,*^X* with $p_{T,X} \gg M_X$ 1 jet

 $\theta \approx$

How to distinguish signal jets from QCD background?

Jet mass discriminating power

Not enough to put a cut on the plain jet mass

The logarithmic structure can be traced back to the soft divergence

A hard cut on z reduces QCD background and simplifies it shape

$$
l_{x} = \frac{m_{x}^{2}}{r_{t}^{2}R^{2}} = z(1-z)\theta_{1}^{2}
$$

Cut on jet substructure enables bump hunting

$\overline{}$ pt, jets - 700 Geven 1990
Pt,jets - 700 Geven 1900
Pt,jets - 700 Geven 1900 Geven 1900 e the $z_{\rm c}$ 0.15 How do you impose the z_{cut} in practice?

Cut on jet substructure enables bump hunting

$qq \rightarrow qq + Wj$ mixture

Grooming (using SoftDrop as an example) experimentally

[Larkoski et al [JHEP 05 \(2014\) 146\]](https://inspirehep.net/literature/1281068)

- \bullet Recluster anti- k_t jet with C/A algorithm: angular ordered sequence
- ๏ Undo last clustering step, i.e. pair of subjets with largest angle

- ๏ If branch point satisfies the condition, stop
- ๏ Else, remove the softer branch and continue down the hard branch

Net effect for $\beta = 0$ is to remove soft radiation from the jet

Grooming (using SoftDrop as an example) theoretically

1S:
$$
m^{2} = \left(\sum_{i \in j \in k} K_{i}\right)^{2} \sum (m^{2}) = \frac{1}{\sigma} \int_{\sigma}^{m^{2}} dm^{1} \frac{d\sigma}{dx^{2}} = A + \alpha_{3} \sum_{i}^{10}
$$

\n
$$
|M_{R}|^{2} = \frac{\alpha_{5}}{2\pi} (2\zeta_{F}) \frac{K_{1}K_{2}}{(K_{1}K_{2})(K_{2}K_{3})} \frac{K_{1} = \frac{Q}{2} [M_{1}99.4]}{K_{2} = \frac{Q}{2} [M_{1}99.4]}
$$
\n2A = w(A, swB cosp, sin8)
\n2A = w(A, swB cosp, sin8)
\n
$$
\frac{1}{\sqrt{2\pi}} \frac{1}{\omega^{2}(4-c_{3}9)(4+c_{3}9)} = \frac{1}{\omega^{2}(4-c_{3}9)(4+c
$$

Grooming (using SoftDrop as an example) theoretically

1S:
$$
m^{2} = \left(\sum_{i \in j \in k} k_{i}\right)^{2} \sum (m^{2}) \cdot \frac{1}{\sigma} \int_{\sigma}^{m^{2}} dm^{1^{2}} \frac{d\sigma}{dm^{2}} = A + \alpha_{5} \sum_{i}^{10}
$$

\n
$$
|M_{R}|^{2} = \frac{\alpha_{5}}{2D} (2C_{F}) \frac{k_{1}k_{2}}{(k_{1},k_{3})(k_{2},k_{3})} \frac{k_{1} \cdot \frac{Q}{2} [M_{1}QQ_{1}A]}{k_{2} \cdot \frac{Q}{2} [M_{1}QQ_{1}A]}
$$
\n2A = $\omega(M, \alpha_{0}, \alpha_{1})$
\n15. $M_{R}^{2} = \frac{\alpha_{5}}{2D} (2C_{F}) \frac{k_{1}k_{2}}{(k_{1},k_{3})(k_{2},k_{3})} \frac{k_{1} \cdot \frac{Q}{2} [M_{1}QQ_{1}A]}{k_{2} \cdot \frac{Q}{2} [M_{1}QQ_{1}A]}$
\n2A = $\omega(M, \alpha_{0}, \alpha_{0})$
\n16. $\frac{1}{\rho} - \frac{3}{4} \ln \left(\frac{1}{\rho}\right), \frac{1}{\rho} - \frac{3}{4} \ln \left(\frac{1}{\rho}\right), \frac{1}{\rho} - \frac{2}{4} \ln \left(\frac{1}{\rho}\right), \frac{1}{\rho} - \frac{2}{4} \ln \left(\frac{1}{\rho}\right)$
\nFor $p=0$, m_{S} stable by dividing ω

Grooming (using SoftDrop as an example) theoretically

SoftDrop becomes active when $\rho < z_{\text{cut}}$

Grooming: theory meets experiment

[Calculation: Frye et al [JHEP 07 \(2016\) 064\]](https://inspirehep.net/literature/1437957) [Data: ATLAS Collab [PRL 121 \(2018\) 092001](https://inspirehep.net/literature/1637587)]

\sf{VE} Lo_{tte} N_P effects and the second seco

Another interesting SoftDrop observable: z_g

[Larkoski et al PRL 119 (2017) 13, 132003]

)

d*z*⁰ *Pi*(*z*⁰ $F_{\rm 5.5}$ from $F_{\rm 6.5}$ $F_{\rm 6.5}$ $F_{\rm 7.5}$ from $F_{\rm 6.5}$ $F_{\rm 7.5}$ $F_{\rm 7.5}$ $F_{\rm 7.5}$ distribution is the community of the prediction of the prediction of the prediction of the prediction, yet agrees very contact the prediction of the p Exposing the QCD splitting function with jet substructure

THE substructure observable: the Lund jet plane

C/A reclustered jet

 $k_t = z p_{t,jet} \theta$

THE substructure observable: the Lund jet plane

C/A reclustered jet

The primary Lund-plane density

The primary Lund-plane density 1.5

Emission density

The primary Lund-plane density: theory-to-data

 $\rho_{\rm LO}(\theta, k_t$ \mathcal{P}_{L} \mathcal{P}_{L} and \mathcal{P}_{L} and \mathcal{P}_{L} and \mathcal{P}_{L} and \mathcal{P}_{L} and the total total total the total total theorem experimental uncertainty from the measured data. For the measured data. For the prediction, and the prediction, and

) core

+ *p* emission

z = *p*

[∆]*R* = ∆*R*(emission, core)

T ^T / (*^p* emission *T* Powerful tool to disentangle between different MC ingredients Fig. 5: The projections of the primary Lund plane density onto the ln(*R/*D*R*) (left) and ln(*kT*) (right) axes comfor a non-perturbative region and the bottom left for a perturbative region. The right panels show the *k*^T distribution

 $\overline{9}$

 $-$ ^{$-$}

 \overline{a}

1.05

 $($

 $\ddot{}$

Mission (hopefully) accomplished !

Jet physics in 2024

Alba Soto Ontoso Saariselkä, 25-27th June, 2024 Midsummer School in QCD

