Vector meson photoproduction in heavy ions at LHC

Luis F. Alcerro I.alcerro@cern.ch

Department of Physics & Astronomy University of Kansas

QCD midsummer school Saariselkä, Finland Jul 4, 2024

OUTLINE

- Ultraperipheral collisions
- Vector meson photoproduction
- Heavy quarkonia
- Light vector mesons
- Summary

Ultrapheripheral collisions (UPCs)

- When ions don't "touch" each other: Impact parameter $b > R_1 + R_2$:
- These processes dominate nucleusnucleus cross section.
- Electromagnetic (photon) interactions dominate.
- Photons are quasi-real: $Q^2 \lesssim 1/R_A^2$
- Large photon flux $\sim Z^2$ (Fermi/ Weizsacker-Williams). In the case of Pb, probability 82⁴ larger than proton!

Ultrapheripheral collisions (UPCs)

Experimentally very clean events !

Types of processes in UPCs

Photon - photon:

• BSM physics

QED precision tests

Photon - target:

Gluons from nucleus (target)

- Sensitive to saturation gluon saturation
- Test nuclear PDFs

•••

Types of processes in UPCs

Photon - photon:

- BSM physics
- QED precision tests

. . .

Gluons from nucleus (target)

Sensitive to saturation gluon saturation Test nuclear PDFs

UPCs and saturation

- energies.
- recombinations.
- $Q_{\rm S} \propto A^{1/3}$

Photon resolution power (Q)-

Vector meson photoproduction

- Vector mesons: particles with spin 1 and odd parity.
- Photon quantum numbers ($J^{PC} = 1^{--}$) same for
- VM \rightarrow highly likely a photon will fluctuate into a VM !
- VM photoproduction cross section $\propto (xg(x, Q^2))^2$ at LO \rightarrow sensitive to saturation
- Photoproduced VM cross section at small x can test gluon density
- In particular, heavy quarkonia (J/ ψ , Y), sets an enough large scale for pQCD.

Vector meson photoproduction kinematics

• A given $y \rightarrow$ Fixes ω, x, W

•
$$\omega = \frac{M_{VM}}{2} e^{\pm y}$$

- y: Rapidity of the VM
- ω : Photon energy
- M_{VM} : Mass of the VM

•
$$x = \left(\frac{M_{VM}}{\sqrt{s_{NN}}}\right) e^{\mp y}$$

•
$$W^2 = M_{VM} \sqrt{s_{NN}} \cdot e^{\pm y}$$

 W: Centre-of-mass energy of the photontarget system

Coherent and Incoherent VM production

Coherent:

- Photon couples with the nuclei as a whole
- Nuclei usually remains intact
- Incoherent:
 - Photon couples to single nucleons
 - Nuclei usually breaks
- In both cases we can have additional photon exchanges:
 - Nuclei collective excitation
 - Neutron emission as de-excitation processes.

A

Photoproduction in pp/ep vs. AA

- Advantage:
- Wavelength $\lambda \propto R_{\rm proton}$, then higher photon virtualities (better "resolution power".).
- Disadvantage:
- Low photon flux

- Disadvantage:
- Wavelength $\lambda \propto R_{Ion}$, then lower photon virtualities (worse "resolution power").
- Advantages:
- High photon flux (enhanced by Z^2).
- Saturation scale easier to be accessed (scale by $A^{1/3}$).

11

Looking inside protons...

 $\gamma + p \rightarrow J/\psi + p$

- Investigated with ep, pPb and pp collisions by HERA and LHC
- Consistent results between
 HERA and LHC data.
- Data follow a power-law trend, consistent with the rapidly increasing gluon density.
- No evidence for saturation !

(dn) (d+ψ/L <

a(γ+p

EPJC 79 (2019) 402

Looking inside Pb...

 $\gamma + Pb \rightarrow J/\psi + Pb$

• Gluons inside Pb:

• $\sigma(J/\psi) < \text{Impulse}$

Approximation(simplest model only putting protons and neutrons together)

 \rightarrow strong nuclear modification in nuclei.

 No theory model can describe data at both forward and central rapidities.

EPJC 81 (2021) 712

Looking inside Pb...

low and high energy photons.

$$\frac{d\sigma_{AA\to AA'J/\psi}}{dy} = N_{\gamma/A}(y) \cdot \sigma_{\gamma A\to J/\psi A'}(y) + N_{\gamma/A}(-y) \cdot \sigma_{\gamma A\to J/\psi A'}(-y)$$

A solution to the two-way ambiguity puzzle

Control impact parameter of UPCs via forward neutron emissions Ann. Rev. Nucl. Part. Sci. 70 (2020) 323

Additional photon exchanges lead to neutron emissions via EMD.

• $b_{XnXn} < b_{0nXn} < b_{0n0n}$

Total Coh. J/ψ cross section in neutron categories

arXiv:2303.16984

- ZDC allows to classify events in neutron categories.
- First separation in different neutron categories.

Coh. J/ψ photo nuclear cross section vs W

- ZDC categories allow us to obtain the W dependence.
- W< 40 GeV: rapidly increasing
- Higher W: slow rise \rightarrow underlying physics changed!
- First evidence of saturation?
- No models can describe the entire data distribution!

What about even higher mass?

- different dipole size.
- Important to compare with saturation/shadowing models.

Photoproduction of Y (composed of bb), allows to probe nuclei with a

• The high mass (even higher than J/ ψ) sets a sufficiently large scale for pQCD.

Lighter vector mesons

- In Asymmetric systems, such as pPb, photon comes from the Pb nucleus (no emitter/target ambiguity).
- Light vector mesons are more challenging for pQCD.
- LHC data complement HERA extensive program.

Lighter vector mesons

In symmetric collisions, we have quantum interference.

Manifested as angular modulations

Lighter vector mesons

- It is expected that interference effects vanish at large impact parameter.
- Effect observed in ALICE data.

Summary

- UPCs are very clean processes to test QED and QCD phenomena.
- Photoproduction of VMs in UPCs are powerful probes to test the gluonic structure of nuclei.
- The topic has brought the attention lately in the LHC community and continues the HERA legacy.
- Many interesting ongoing related studies in CMS, to be unveiled soon !

10

10²

10

10³

W (GeV)

Backup slides

Event classification via neutron multiplicity

•Energy depositions in ZDCs allow to classify events in neutron categories.

A solution to the two-way ambiguity puzzle

What is measured

Dominant b ranges of different neutron classes:

- 0n0n: b > 40 fm٠
- $0nXn: b \sim 20 \text{ fm}$ ٠
- XnXn: b < 15 fm•

$$\frac{d\sigma_{AA\to AAJ/\psi}^{0n0n}}{dy} = N_{\gamma}^{0}$$
$$\frac{d\sigma_{AA\to AA'J/\psi}^{0nXn}}{dy} = N_{\gamma}^{0}$$
$$\frac{d\sigma_{AA\to AA'J/\psi}^{0nXn}}{dy} = N_{\gamma}^{0}$$

 \rightarrow Solve for $\sigma_{\gamma A \rightarrow J/\gamma}$

What we want Photon flux from theory $\sigma_{\gamma/A}^{0n0n}(y) \cdot \sigma_{\gamma A \to I/\psi A'}(y) + N_{\gamma/A}^{0n0n}(-y) \cdot \sigma_{\gamma A \to I/\psi A'}(-y)$ $\int_{V/A}^{0nXn}(y) \cdot \sigma_{\gamma A \to I/\psi A'}(y) + N_{\gamma/A}^{0nXn}(-y) \cdot \sigma_{\gamma A \to I/\psi A'}(-y)$ $\sum_{\nu/A}^{XnXn}(y) \cdot \sigma_{\nu A \to I/\psi A'}(y) + N_{\nu/A}^{XnXn}(-y) \cdot \sigma_{\nu A \to I/\psi A'}(-y)$

$$\psi_{A'}(y)$$
 and $\sigma_{\gamma A \to J/\psi A'}(-y)$, and $x = \left(\frac{M_{VM}}{\sqrt{s_{NN}}}\right) e^{-\frac{1}{2}}$

Entering a new regime of small $x \sim 10^{-4} - 10^{-5}$ in nuclei!

