Photon photon physics at the LHC

Christophe Royon University of Kansas, Lawrence, USA Mid-Summer school on QCD

June 24-July 7 2024, Saariselkä, Finland

Contents

- Proton tagging at the LHC
- $\gamma\gamma\gamma\gamma\gamma$, $\gamma\gamma\gamma Z$, $\gamma\gamma WW$, $\gamma\gamma ZZ$ anomalous coupling studies
- Search for Axion-like particles
- UFSD and applications for cosmic rays / medical physics

Strange events: intact protons after interaction

- Some unique events can be produced where the proton is not destroyed! The proton loses part of its energy
- These events can be produced via gluon or photon exchanges
- Consider clean proton tagging (rapidity gap is tricky experimentally)

What is the CMS-TOTEM Precision Proton Spectrometer (CT-PPS)?

- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795
- LHC magnets bend scattered protons out of the beam envelope
- Detect scattered protons a few mm from the beam on both sides of CMS: 2016-2018, \sim 115 fb⁻¹ of data collected
- Similar detectors: ATLAS Forward Proton (AFP)

Which tools do we have? Roman Pot detectors

- We use special detectors to detect intact protons/ anti-protons called Roman Pots
- These detectors can move very close to the beam (up to 3σ) when beam are stable so that protons scattered at very small angles can be measured

How to explain the fact that protons can be intact?

- Quarks/gluons radiate lots of gluons when one tries to separate them (confinement)
- Gluons exchange color, interact with other gluons in the proton and in that case protons are destroyed in the final state
- In order to explain how protons can remain intact: we need colorless exchanges, or at least 2 gluons to be exchanged ; can also be photon exchanges

Kinematics: the example of single diffractive events

- t: 4-momentum transfer squared
- ξ: proton fractional momentum loss (momentum fraction of the proton carried by the pomeron)
- $\beta = x_{Bj}/\xi$: Bjorken-x of parton inside the pomeron
- $M^2 = s\xi$: diffractive mass produced ($M^2 = s\xi_1\xi_2$ in case of double pomeron exchange)
- $\Delta y_{1,2} \sim \Delta \eta \sim \log 1/\xi_{1,2}$: rapidity gap

Different beam optics at the LHC: what is β^* ?

- β* is a beam parameter that is related to the beam size (σ) at the interaction
- Low β^* : beams well focused, high luminosity, high pile up
- High β^* : beam not well focused, low luminosity, low pile up, can approach closer to the beam center in terms of σ

• In most of the results shown in the following, we will assume low β^* , which means high luminosity, standard runs at the LHC

Detecting intact protons in ATLAS/CMS-TOTEM at high luminosity

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM - Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Complementarity between low and high mass diffraction (high and low cross sections): special runs at low luminosity (no pile up) and standard luminosity runs with pile up

Quasi-exclusive $\mu\mu$ and *ee* production in PPS/AFP

- Turn the LHC into a $\gamma\gamma$ collider at high luminosity: flux of quasi-real photons under the Equivalent Photon Approximation, dilepton production dominated by photon exchange processes
- CMS TOTEM-Precision Proton Spectrometer: Tag one of the two protons
- \bullet The dilepton mass acceptance of PPS/AFP starts at about ${\sim}400~\text{GeV} \to \text{expect very}$ small number of double tagged events
- The two first diagrams are signal, the last one background

Observed signal

- First measurement of semi-exclusive dilepton process with proton tag
- PPS works as expected (validates alignment, optics determination...)
- 17 (resp. 23) events are found with protons in the PPS acceptance and 12 (resp. 8) $< 2\sigma$ matching in the $\mu\mu$ (resp. ee) channel (JHEP 1807 (2018) 153)
- Significance > 5σ for observing 20 events for a background of 3.85 ($1.49 \pm 0.07(stat) \pm 0.53(syst)$ for $\mu\mu$ and $2.36 \pm 0.09(stat) \pm 0.47(syst)$ for ee)

Summary of 20 candidates properties

- Dimuon invariant mass vs rapidity distributions in the range expected for single arm acceptance
- No event at higher mass that are double tagged: The two dielectron events in the acceptance region are compatible with pile up contamination (2.36 events expected)
- Highest mass event: 917 GeV
- JHEP 1807 (2018) 153

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$, $pp \rightarrow ppZZ$, $pp \rightarrow pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see papers by C. Baldenegro, S. Fichet, M. Saimpert, G. Von Gersdorff, E. Chapon, O. Kepka, CR... Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801; JHEP 1706 (2017) 142; JHEP 1806 (2018) 131

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charged particles $\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$ where the coupling depends only on $Q^4 m^{-4}$ (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

One aside: what is pile up at LHC?

can be faked by one collision with 2 photons and protons from different collisions

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...
- Anomalous coupling events appear at high di-photon masses
- S. Fichet, G. von Gersdorff, B. Lenzi, C.R., M. Saimpert ,JHEP 1502 (2015) 165

Search for quartic $\gamma\gamma$ anomalous couplings

 No background after cuts for 300 fb⁻¹: sensitivity up to a few 10⁻¹⁵, better by 2 orders of magnitude with respect to "standard" methods

 Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

First search for high mass exclusive $\gamma\gamma$ production

• Search for exclusive diphoton production: back-to-back, high diphoton mass ($m_{\gamma\gamma} > 350$ GeV), matching in rapidity and mass between diphoton and proton information

- First limits on quartic photon anomalous couplings: $|\zeta_1| < 2.9 \ 10^{-13} \ \text{GeV}^{-4}$, $|\zeta_2| < 6. \ 10^{-13} \ \text{GeV}^{-4}$ with about 10 fb⁻¹, accepted by PRL (2110.05916)
- Limit updates with 102.7 fb^{-1}: $|\zeta_1| <$ 7.3 10^{-14} GeV $^{-4}$, $|\zeta_2| <$ 1.5 10^{-13} GeV $^{-4}$

First search for high mass production of axion-like particles

- First limits on ALPs at high mass (CMS-PAS-EXO-21-007)
- Sensitivities projected with 300 fb $^{-1}$ (C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1806 (2018) 13)

- Production of ALPs via photon exchanges in heavy ion runs: Complementarity to *pp* running
- Sensitivity to low mass ALPs: low luminosity but cross section increased by Z⁴, C. Baldenegro, S. Hassani, C.R., L. Schoeffel, Phys. Lett. B795 (2019) 339; D. d'Enterria et al., PRL 111 (2013) 080405

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)
- Leads to a very good sensitivity to $\gamma\gamma\gamma Z$ couplings

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142
- Best expected reach at the LHC by about three orders of magnitude
- Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

Exclusive production of W boson pairs

• Search with fully hadronic decays of *W* bosons: anomalous production of *WW* events dominates at high mass with a rather low cross section

- 2 "fat" jets (radius 0.8), jet $p_T > 200$ GeV, 1126< $m_{jj} < 2500$ GeV, jets back-to-back ($|1 - \phi_{jj}/\pi| < 0.01$)
- Signal region defined by the correlation between central *WW* system and proton information

WW and ZZ exclusive productions

- Searches performed in full hadronic decays of *W* bosons (high cross section) with AK8 jets
- SM cross section is low
- Limits on SM cross section $\sigma_{WW} < 67 {\rm fb}, \ \sigma_{ZZ} < 43 {\rm fb}$ for $0.04 < \xi < 0.2$ (CMS-PAS-EXO-21-014)
- New limits on quartic anomalous couplings (events violating unitarity removed) : $a_0^W/\Lambda^2 < 4.3 \ 10^{-6} \ \text{GeV}^{-2}$, $a_C^W/\Lambda^2 < 1.6 \ 10^{-5} \ \text{GeV}^{-2}$, $a_0^Z/\Lambda^2 < 0.9 \ 10^{-5} \ \text{GeV}^{-2}$, $a_C^Z/\Lambda^2 < 4. \ 10^{-5} \ \text{GeV}^{-2}$ with 52.9 fb⁻¹

The future: Observation of exclusive WW production

- SM contribution appears at lower WW masses compared to anomalous couplings
- Use purely leptonic channels for *W* decays (the dijet background is too high at low masses for hadronic channels)
- SM prediction on exclusive WW (leptonic decays) after selection: about 50 events for 300 fb⁻¹ (2 background)
- JHEP 2012 (2020) 165, C. Baldenegro, G. Biagi, G. Legras, C.R.

Exclusive $t\bar{t}$ production

dilep channel ($\bar{t}t \rightarrow l\nu b + l\nu \bar{b}$)	Semilep channel ($\bar{t}t \rightarrow l\nu b + jj\bar{b}$)				
Object selection					
Leptons: pT>30(20)GeV, η <2.1 Jets: pT>30GeV, η <2.4, ΔR(j,l)>0.4	Leptons: pT>30GeV, η <2.1(2.4) for e(μ) Jets: pT>25GeV, η <2.4, ΔR(j,l)>0.4				
Event selection					
≥2 leptons (OS pair), m(ll)-m(Z) >15GeV ≥2 b-jets 1 proton / side	=1 lepton ≥2 b-jets, ≥2 non b-jets 1 proton / side				

Exclusive $t\bar{t}$ production

• Kinematic fitter based on *W* and *t* mass constraints to reduce background

- Search for exclusive $t\overline{t}$ production in leptonic and semi-leptonic modes
- $\sigma_{t\bar{t}}^{excl.} <$ 0.59 pb (CMS-PAS-TOP-21-007)

Additional method to remove pile up: Measuring proton time-of-flight

- Measure the proton time-of-flight in order to determine if they originate from the same interaction as the selected photon
- Typical precision: 10 ps means 2.1 mm
- Idea: use diamond, quartz bar, ultra-fast Si Low Gain Avalanche Detectors (signal duration of ~few ns and possibility to use fast sampling to reconstruct full signal)

Exclusive $t\bar{t}$ production: the future

- Search for $\gamma\gamma t\bar{t}$ anomalous coupling in semi-leptonic decays with 300 fb⁻¹
- Use similar selection: high $t\bar{t}$ mass, matching between pp and $t\bar{t}$ information
- Use fast timing detectors to suppress further the pile up background
- C. Baldenegro, A. Bellora, S. Fichet, G. von Gersdorff, M. Pitt, CR, JHEP 08 (2022) 021

Coupling $[10^{-11} {\rm GeV^{-4}}]$	$95\%~{ m CL}$	5σ	$95\%{ m CL}(60{ m ps})$	$5\sigma \ (60 \mathrm{ps})$	$95\%\mathrm{CL}~(20\mathrm{ps})$	$5\sigma \ (20 \mathrm{ps})$
ζ_1	1.5	2.5	1.1	1.9	0.74	1.5
ζ_2	1.4	2.4	1.0	1.7	0.70	1.4
ζ_3	1.4	2.4	1.0	1.7	0.70	1.4
ζ_4	1.5	2.5	1.0	1.8	0.73	1.4
ζ_5	1.2	2.0	0.84	1.5	0.60	1.2
ζ_6	1.3	2.2	0.92	1.6	0.66	1.3

Goals of AGILE (Advanced Energetic Ion Electron Telescope)

 Build a compact low power and low cost instrument for characterization of solar energetic (SEP) and anomalous cosmic ray (ACR) particles

- Focus on lons (H-Fe), E = (1 100)MeV/nucl, Electrons, E = (1 - 10)MeV, upgradable to higher energy ranges
- AGILE will perform robust real-time particle identification and energy measurement in space
- Solution: use multiple layers of fast Si detector (with or without absorbers) and measure the signal in stopping layer using the fast sampling technique
- Characteristics aspects of the signal (amplitude and duration) allow particle Id and energy measurement

Signal amplification and measurement

- Signal originating from a Si detector: signal duration of a few nanoseconds (fast detector)
- 1st step: Amplify the signal using an amplifier designed at KU using standard components (price: a few 10's of Euros per channel)
- 2nd step: Very fast digitization of the signal: measure many points on the fast increasing signal as an example
- Allows to measure simultanously time-of-flight, pulse amplitude and shape

AGILE schematic principle

Method developed for AGILE: signal measurement

- 3 layers of fast Si detectors as a prototype
- Identification of ion type (p, He, Au, Pb, etc) and energy measurement by measuring the signal amplitude and duration

- Simulated signals of a 14 MeV/n oxygen ion that stopped in 2nd layer of AGILE
- Key characteristics: Maximum Amplitude and time to reach 90% of maximum

Particle identification with AGILE

- Maximum amplitude vs time needed to reach 90% of maximum of amplitude (rise time) for p-Fe ions stopping in the detector
- Allows to obtain Particle Id since curves do not overlap for many values of rise time
- Allows even to distinguish between ³He, and ⁴He!
 - Launch is foreseen by the end of this year

Particle identification with AGILE

- Maximum amplitude vs Rise time for Protons, ³He, and ⁴He ions
- We can distinguish ³He, and ⁴He!

AGILE: Measuring energy of particles

- Rise time vs energy (or amplitude vs energy) allows to measure particle energy once the particle Id is known with high precision
- The energy reach depends obviously on the number of Si layers
- Launch by NASA foreseen for this year: first time we will do particle Id and energy measurement using the fast sampling technique in space!

AGILE mockup: the first prototype

- \bullet 3 layers of 300 $\mu \rm m$ Si detectors
- Dimensioned to fit a CubeSat (10 cm×10 cm)
- Flying in end of 2024 for a 1 year mission
- Focus on ions at lower energy range (40 $\,MeV/n)$
- A further upgrade will be to add more layers (increase the energy range) and launch a network of satellites (large coverage of space)

Measuring radiation in cancer treatment

- Ultra fast silicon detectors and readout system were put in an electron beam used in the past for photon therapy at St Luke Hospital, Dublin, Ireland
- Precise and instantaneous measurements of dose during cancer treatment (especially for flash proton beam treatment)
- Develop a fast and efficient detector to count the particles up to a high rate: very precise instantaneous dose measurement, no need of calibration, high granularity (mm²)

What Si detector can do better: Single particle Id in Dublin hospital

- Use UFSD and their fast signal in order to identify and measure spikes in signal due to particles passing by
- Allows measuring doses almost instantaneously

• Very precise dose measurement allowing to adapt better treatment to patients especially for flash dose treatments (brain cancer for instance)

Tests performed at St Luke hospital, University of Dublin, Ireland

- Measurement of charge deposited in Si detector compared to standard measurement using an ion chamber: good correlation
- Our detectors see in addition the beam structure (periodicity of the beam of \sim 330 ps, contrary to a few seconds for the ion chamber): measure single particles from the beam
- Fundamental to measure instantaneous doses for high intensity proton therapy as example
- For more details: Arxiv 2101.07134, Phys. Med. Biol. 66 (2021) 135002

Conclusion

- LHC can be seen as a $\gamma\gamma$ collider!
- $\gamma\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma Z$ anomalous coupling studies and SM observation
 - Exclusive process: photon-induced processes $pp \rightarrow p\gamma\gamma p$ (gluon exchanges suppressed at high masses)
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allow to probe BSM diphoton production in a model independent way
- Sensitivity to ALPs: Improvement by more than one order of magnitude
- Complementarity between pp, pA, AA runs

