

Monte Carlo Event Generators

Alan Price (Sherpa) Midsummer school in QCD 2024 Saariselkä

JAGIELLONIAN UNIVERSITY In Kraków

Structure of LHC Events

Hadronization

Underlying Event

Parton Showers

- Accelerated charges radiate: At the LHC we have large momentum transfer which leads to a lot of radiation
- **QED:** Electrically charge particles will emit photons, which can further split
- **QCD:** Quarks will emit gluons, gluons will split into quark pairs or into two gluons

This cascade of emissions is known as a parton shower

An analogy: Radioactive decays

Consider radioactive decay of an unstable isotope with half-life τ

"Survival" after time t

 $S(t) = \mathcal{P}(t)$

$$\frac{d \mathscr{P}_{dec}(t)}{d t} = -\frac{d \mathscr{P}_{nodec}(t)}{d t} = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$
ope decay at any fixed time *t* determined by $\Gamma = \frac{1}{\tau}$

Probability for isoto

$$t)=e^{-\frac{t}{\tau}}$$

An analogy: Radioactive decays

Add time dependence $\Gamma \rightarrow \Gamma(t)$

$$\frac{d \mathscr{P}_{dec}(t)}{d t} = \Gamma(t) \exp(t)$$

The exponential suppresses a decay before t

We will see later that this is so called **Sudakov Form Factor**

$\left| - \int_{0}^{t} dt' \Gamma(t') \right| = \Gamma(t) \mathscr{P}_{\text{no-dec}}(t)$

Example: $e^+e^- \rightarrow q\bar{q}g$

 $\frac{d\sigma_{ee \to 3j}}{dx_1 dx_2} = \sigma_{ee \to 2j} \frac{C_F c}{\pi}$

$$\frac{x_1^2 + x_2^2}{\tau (1 - x_1)(1 - x_2)}$$

Divergent in the limits $x_{1/2} \rightarrow 1$

Example: $e^+e^- \rightarrow q\bar{q}g$

Rewrite in terms of opening angle and gluon fractional energy

 $\frac{d\sigma_{ee\to 3j}}{d\cos\theta_{qg}dx_3} = \sigma_{ee\to 2j}\frac{C_F\alpha_s}{\pi}$

$$\frac{x_s}{\sin \theta_{qg}} \begin{bmatrix} 2 & 1 + (1 - x_3)^2 \\ \frac{1}{\sin \theta_{qg}} & x_3 \end{bmatrix}$$

Example: $e^+e^- \rightarrow q\bar{q}g$

Re-express the singularities

Independent evolution of two jets

 $d\sigma_3 \propto \sigma_2 \sum$ $i=q,\bar{q}$

$$+\frac{d\cos\theta}{1+\cos\theta}\approx\frac{d\theta^2}{\theta}+\frac{d\bar{\theta}^2}{\bar{\theta}}$$

$$C_F \frac{\alpha_s}{2\pi} \frac{d\theta_i^2}{\theta_i^2} P(z)$$

8

Any variable with the same limiting behaviour leads to the same equation

Transverse momentum $k_{\perp}^2 = z^2(1-z)^2\theta^2 E^2$

Virtuality
$$q^2 = z(1 - z)\theta^2 E^2$$

Universal Collinear Approximation

 $P_{ab}(z)$ Splitting function (See QCD lectures)

$$d\sigma_{n+1} \propto \sigma_n$$

$$\frac{d\theta^2}{\theta^2} = \frac{dk_\perp^2}{k_\perp^2} = \frac{dq^2}{q^2} = \frac{dt}{t}$$

$$\sum_{i} \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{ab}(z)$$

Parton Shower: Construction

Collinear partons are not separately resolvable

Introduce a "resolution criterion" which also acts an IR regulator

KLN theorem again: Combine the virtual with unresolved to get IR finite result

Unitarity:

 $\mathscr{P}(\text{resolved}) + \mathscr{P}(\text{unresolved}) = 1$

$$d\sigma_{n+1} \propto \sigma_n \sum_{i} \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{ab}(z)$$

Sudakov Form Factor

 \clubsuit Differential probability for emission between q^2 and $q^2 + dq^2$

Emissions can modelled as Poisson distribution

Sudakov Form Factor: $\Delta(t, t') := \mathscr{P}_{no-em}(t, t')$

$$d\mathcal{P}_{em} = \frac{dt}{t} \int dz \frac{\alpha_s}{2\pi} P_{ab}(z)$$

$$\mathscr{P}$$
no-em $(t, t') = \exp\left\{-\int_{t}^{t'} \frac{d\overline{t}}{\overline{t}} \int dz \frac{\alpha_s}{2\pi} P_{ab}(z)\right\}$

Compact Notation

$$\Delta_{ij,k}^{K}(t,t_0) = \exp\left[-\int_{t_0}^t \frac{dt}{t} \frac{\alpha_s}{2\pi} \int dz \frac{d\phi}{2\pi} K_{ij,k}(t,z,\phi)\right]$$

 $K_{ij,k}(t,z,\phi)$ is splitting kernel for $(ij) \rightarrow i, j$ with spectator k

 \clubsuit Evolution parameter t is defined by kinematics e.g angle or p_{\perp}

Simplify
$$dt dz \frac{d\phi}{2\pi} \to d\Phi_1$$

First Emission

Sudakov Form Factor for emission of N partons

$$K_n(\Phi_1) = \frac{\alpha_s}{2\pi} \sum_{\{ij,k\}} K_{ij,k}(\Phi_{ij,k})$$

Consider the first emission off the Born configuration $d\sigma_B = d\Phi_n B_n(\Phi_n) \left[\Delta_n^K(\mu^2, t_0) \right]$

Term in square brackets integrates to one: Unitarity of the parton

shower

$$\Delta_n^K(t, t_0) = \exp\left[-\int_{t_0}^t d\Phi_1 K_n(\Phi_1)\right]$$

$$_{0}) + \int_{t_{0}}^{\mu^{2}} d\Phi_{1} K_{n}(\Phi_{1}) \Delta_{n}^{K}(\mu^{2}, t(\Phi_{1})) \bigg]$$

Further Emission

$$d\sigma_{B} = d\Phi_{n} B_{n}(\Phi_{n}) \left[\Delta_{n}^{K}(\mu^{2}, t_{0}) + \int_{t_{0}}^{\mu^{2}} d\Phi_{1} K_{n}(\Phi_{1}) \Delta_{n}^{K}(\mu^{2}, t(\Phi_{1})) \right]$$

$t < \mu^2$: Unresolved Region, no explicit emission

• $t > \mu^2$: Generate resolved emission at t

Example: ME+PS for Drell-Yan

 ϕ_η^*

Multijet Merging

Parton shower resums logarithms and is a good description of collinear/ soft emissions jet evolution (Large Logs)

Matrix elements at given order is fair description of hard/large-angle emissions jet production (small logs)

"Merge" both approaches

Multijet Merging

Separate regions of jet production and jet evolution with jet measure Q_i

Populate hard region with Matrix elements

Parton Shower will dominate the soft

Multijet Merging: First Emission

$$d\sigma_B = d\Phi_n B_n(\Phi_n) \left[\Delta_n^K(\mu^2, t_0) + \int_{a}^{b} \Delta_n^K(\mu^2, t_0) \right]$$

$$+d\Phi_{n+1}B_{n+1}\Delta_n^T$$

Potential different starting scales

Unitarity violation: Solved in UMEPS formalism

 $\int_{t_{-}}^{\mu_{n}^{2}} d\Phi_{1} K_{n}(\Phi_{1}) \Delta_{n}^{K}(\mu_{n}^{2}, t_{n+1}) \Theta(Q_{J} - Q_{n+1})$ t_0

 $K_n(\mu_{n+1}^2, t_{n+1})\Theta(Q_{n+1} - Q_I)$

L. Lonnblad & S. Prestel, JHEP 1302 (2013) 09

Di-photons @ATLAS

	_			ľ
			_	
			_	
			_	
			_	
			_	_
			_	_
			_	_
-				
			-	
		· · · ·	-	
			-	
			_	
			_	
				-

Di-photons@ATLAS

- Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO)
- - Combine them all into one sample and consistently remove double-counting

ncreasing jet multi (but this time at NLO) onsistently remove double-counting

Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO

V Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$

V Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$

Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$

V Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$ Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$ restrict to $Q_{n+2} < Q_{cut}$

V Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$ Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$ restrict to $Q_{n+2} < Q_{cut}$ Generate $pp \rightarrow h + 2j$ for $Q_{n+2} > Q_{cut}$

V Identical idea to LO: towers of MEs with increasing jet multi (but this time at NLO) Combine them all into one sample and consistently remove double-counting

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$ Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$ restrict to $Q_{n+2} < Q_{cut}$ Generate $pp \rightarrow h + 2j$ for $Q_{n+2} > Q_{cut}$ Iterate

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$ Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$ restrict to $Q_{n+2} < Q_{cut}$ Generate $pp \rightarrow h + 2j$ for $Q_{n+2} > Q_{cut}$ Iterate

Transverse momentum of the Higgs boson

First emission generated MC@NLO, restrict to $Q_{n+1} < Q_{cut}$ Generate $pp \rightarrow h + j$ for $Q_{n+1} > Q_{cut}$ restrict to $Q_{n+2} < Q_{cut}$ Generate $pp \rightarrow h + 2j$ for $Q_{n+2} > Q_{cut}$ Iterate Sum all contributions

Sherpa Tutorial

https://gitlab.com/aprice/midsummer-school-2024

