Recent results from TOTEM and the discovery of the odderon

Christophe Royon University of Kansas, Lawrence, USA Mid-Summer school on QCD

June 24-July 7 2024, Saariselkä, Finland

- Soft diffraction at the LHC
- Total cross section and elastic interactions
- Introduction to the Odderon
- D0 *pp* and TOTEM *pp* data
- The odderon discovery

What do we want to measure? Diffractive events!

- Protons remain intact after interactions $pp \rightarrow pXp$ (central diffraction or double pomeron exchange) or $pp \rightarrow pXY$ (single diffraction)
- Non-diifractive interactions represent 60 *mb* out of 100 *mb* at LHC
- Intact protons can be detected using dedicated detectors
- Elastic interactions: $pp \rightarrow pp$

How do diffractive events look like in our detector?

What is elastic scattering? The pool game...

- We want to study "elastic" collisions between protons and proton-antiprotons
- In high energy physics: $pp \rightarrow pp$ and $p\bar{p} \rightarrow p\bar{p}$
- In these interactions, each proton/antiproton remains intact after interaction but are scattered at some angles and can lose/gain some momentum as in the pool game

What do we want to study?

- We want to study elastic interactions: pp o pp or par p o par p
- These are very clean events, where nothing is produced outside the two protons
- How to detect/measure these events? We need to detect the intact protons after interaction!
- Interactions explained by the exchange of a colorless object (\geq 2 gluons, photon, etc...) between the two protons

How to explain the fact that protons can be intact?

- Quarks/gluons radiate lots of gluons when one tries to separate them (confinement)
- Gluons exchange color, interact with other gluons in the proton and in that case protons are destroyed in the final state
- In order to explain how protons can remain intact: we need colorless exchanges, or at least 2 gluons to be exchanged

pp interactions: The Large Hadron Collider at CERN

- Large Hadron Collider at CERN: proton proton collider with 2.76, 7, 8 and 13 TeV center-of-mass energy
- Circonference: 27 km; Underground: 50-100 m

Proton detection

- But why are the protons/anti-protons not in the beam (which would prevent detection)?
- As we saw in the pool game, p or \bar{p} are scattered at small angles and thus can be detected in the dedicated roman pot detectors
- NB: in non-elastic diffractive case with some particles produced in CMS $pp \rightarrow pXp$, p and \bar{p} lose part of their energy and we use the LHC/Tevatron magnets as a spectrometer p/\bar{p} at smaller v, so they have a smaller bending radius than the p/\bar{p} from the beam

Forward coverage in CMS-TOTEM

Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger

TOTEM cross section measurements

Analysis methods in TOTEM: total cross section

- N_{inel} measured using T_1 and T_2 telescopes, and N_{el} from the roman pots
- Known equations (Optical theorem) (ρ : ratio of real/Imaginary part of cross section)

$$L\sigma_{tot}^{2} = \frac{16\pi}{1+\rho^{2}} (dN_{el}/dt)_{t=0}$$
$$L\sigma_{tot} = N_{el} + N_{inel}$$

- Different methods to measure the total cross section
 - Lumi independent measurement

$$\sigma_{tot} = rac{16\pi}{(1+
ho^2)} rac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

• Lumi dependent measurement (elastic only)

$$\sigma_{tot}^2 = rac{16\pi}{(1+
ho^2)}rac{1}{L}(dN_{el}/dt)_{t=0}$$

• ρ independent measurement $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$

Elastic, Inelastic and Total cross section at 7, 8 and 13 TeV

- Independent methods with different precision/systematics lead to similar results on elastic, inelastic and total cross sections
- In addition, at 13 TeV, total cross section using lumi independent method for β* = 90m:
 - $\sigma_{tot} = 110.6 \pm 3.4$ mb,
 - $\sigma_{\it el}=$ 31.0 \pm 1.7mb,
 - $\sigma_{\textit{inel}} = 79.5 \pm 1.8 \text{mb}$
- ρ measurement using $\beta^* = 2500m$ data

Elastic, inelastic, total cross section measurements

- High precision measurement of elastic, inelastic and total cross sections
- Measurements in agreement with cosmic-ray data (large error bars though)
- ATLAS \sim 2 σ lower than TOTEM at 8 and 13 TeV: differences due to luminosity measurements?

Measurement of elastic scattering at Tevatron and LHC

- Study of elastic pp → pp reaction: exchange of momentum between the two protons which remain intact
- Measure intact protons scattered close to the beam using Roman Pots installed both by D0 and TOTEM collaborations
- From counting the number of events as a function of |t| (4-momentum transferred square at the proton vertex measured by tracking the protons), we get $d\sigma/dt$

What is the expected situation at the LHC?

- Expected elastic $d\sigma/dt$ before LHC measurements
- Many different predictions including many possible contributions at high |t|, such as pomeron, reggeon, mesons (ω, φ) whereas other predictions mentioned that, at high energies, we should be more asymptotical and pomeron dominated
- Almost nobody thought about the odderon (except a few theorists such as Martynov, Nicolescu...)

TOTEM elastic $pp \ d\sigma/dt$ cross section measurements

- Elastic *pp* $d\sigma/dt$ measurements: tag both intact protons in TOTEM Roman Pots 2.76, 7, 8 and 13 TeV
- Very precise measurements at 2.76, 7, 8 and 13 TeV: Eur. Phys. J. C 80 (2020) no.2, 91; EPL 95 (2011) no. 41004; Nucl. Phys. B 899 (2015) 527; Eur. Phys. J. C79 (2019) no.10, 861

The odderon in a nutshell

- Let us assume that elastic scattering can be due to exchange of colorless objects: Pomeron and Odderon
- Charge parity C: Charge conjugation changes the sign of all quantum charges

- Pomeron and Odderon correspond to positive and negative C parity: Pomeron is made of two gluons which leads to a +1 parity whereas the odderon is made of 3 gluons corresponding to a -1 parity
- Scattering amplitudes can be written as:

 $egin{array}{rcl} A_{pp} &=& Even \ + \ Odd \ A_{par p} &=& Even \ - \ Odd \end{array}$

 From the equations above, it is clear that observing a difference between *pp* and *pp̄* interactions would be a clear way to observe the odderon

What is the odderon? The QCD picture

- Multi-gluon exchanges in hadron-hadron interactions in elastic *pp* interactions (Bartels-Kwiecinski-Praszalowicz)
- From B. Nicolescu: The Odderon is defined as a singularity in the complex plane, located at J = 1 when t = 0 and which contributes to the odd crossing amplitude

- Leads to contributions on 3,... gluon exchanges in terms of QCD for the perturbative odderon
- Colorless C-odd 3-gluon state (odderon) predicts differences in elastic dσ/dt for pp and pp̄ interactions since it corresponds to different amplitudes/ interferences

- The situation is not that simple: elastic scattering at low energies can be due to exchanges of additional particles to pomeron/odderon: ρ, ω, φ, reggeons...
- How to distinguish between all these exchanges? Not easy...
- At ISR energies, there was already some indication of a possible difference between pp and $p\bar{p}$ interactions, differences of about 3σ between pp and $p\bar{p}$ interactions but this was not considered to be a clean proof of the odderon because of these additional reggeon, meson exchanges at low \sqrt{s}

How to explain the fact that protons can be intact?

- We mentioned that we can have exchanges of pomeron/odderon
- Unfortunately, at low energies, situation is much more complicated: meson, reggeon exchanges are possible in addition and there can be interferences

Are we in the asymptotic regime at the LHC?

- Contrary to what some models expected before LHC, the elastic cross section is smooth: we do not see reggeons, mesons...!
- Effects of reggeon, meson exchanges are negligible at LHC energies: we can concentrate on pomeron/odderon studies!
- We can directly look for the existence of the odderon by comparing *pp* and *pp̄* elastic cross sections at very high energies: 1.96 TeV (Tevatron), 2.76, 7, 8, 13 (LHC)

$p\bar{p}$ interactions: the Tevatron

Recent results from TOTEM and the discovery of the odderon

D0 elastic $p\bar{p} \ d\sigma/dt$ cross section measurements

- D0 collected elastic pp̄ data with intact p and p̄ detected in the Forward Proton Detector with 31 nb⁻¹ Phys. Rev. D 86 (2012) 012009
- Measurement of elastic $p\bar{p} \ d\sigma/dt$ at 1.96 TeV for 0.26 < |t| < 1.2 GeV²

Strategy to compare pp and $p\bar{p}$ data sets

- In order to identify differences between pp and pp̄ elastic dσ/dt data, we need to compare TOTEM measurements at 2.76, 7, 8, 13 TeV and D0 measurements at 1.96 TeV
- All TOTEM dσ/dt measurements show the same features, namely the presence of a dip and a bump in data, whereas D0 data do not show this feature

Reference points of elastic $d\sigma/dt$

• Define 8 characteristic points of elastic pp $d\sigma/dt$ cross sections (dip, bump...) that are feature of elastic pp interactions

- Determine how the values of |t| and $d\sigma/dt$ of characteristic points vary as a function of \sqrt{s} in order to predict their values at 1.96 TeV
- We use data points closest to those characteristic points (avoiding model-dependent fits)
- Data bins are merged in case there are two adjacent dip or bump points of about equal value
- This gives a distribution of t and $d\sigma/dt$ values as a function of \sqrt{s} for all characteristic points

- Bump over dip ratio measured for *pp* interactions at ISR and LHC energies
- Bump over dip ratio in *pp* elastic collisions: decreasing as a function of \sqrt{s} up to ~ 100 GeV and flat above
- D0 $p\bar{p}$ shows a ratio of 1.00 ± 0.21 given the fact that no bump/dip is observed in $p\bar{p}$ data within uncertainties: more than 3σ difference between pp and $p\bar{p}$ elastic data (assuming flat behavior above $\sqrt{s} = 100 \, GeV$)

Variation of t and $d\sigma/dt$ values for reference points

$$|t| = a \log(\sqrt{s} [\text{TeV}]) + b$$
 $(d\sigma/dt) = c\sqrt{s} [\text{TeV}] + d$

- The fact that all characteristic points (both t and $d\sigma/dt$) vary in the same way in the dip/bump region as a function of \sqrt{s} is not by chance
- if we display $d\sigma/dt^*$ as a function of t^{**} , we clearly observe scaling $(t^* = |t|(s/|t|)^A$ inspired by saturation models and $t^{**} = s^{0.065}|t|^{1-A}$ with A = 0.28, A value obtained by fitting all TOTEM $d\sigma/dt$ elastic data (599 data points) using the Quality Factor method)

Relative normalization between D0 measurement and extrapolated TOTEM data: total *pp* cross section at 1.96 TeV

- Differences in normalization taken into account by adjusting TOTEM and D0 data sets to have the same cross sections at the optical point $d\sigma/dt(t=0)$ (NB: OP cross sections expected to be equal if there are only C-even exchanges)
- Predict the *pp* total cross section from extrapolated fit to TOTEM data ($\chi^2 = 0.27$)

 $\sigma_{tot} = a_2 \log^2 \sqrt{s} [\text{TeV}] + b_2$

• Leads to estimate of $pp \ \sigma_{tot} =$ **82.7** \pm **3.1 mb at 1.96 TeV**

Relative normalization between D0 measurement and extrapolated TOTEM data: Rescaling TOTEM data

- Adjust 1.96 TeV $d\sigma/dt(t=0)$ from extrapolated TOTEM data to D0 measurement
- From TOTEM *pp* σ_{tot} , obtain $d\sigma/dt(t=0)$:

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}\right)_{t=0}$$

- Assuming $\rho = 0.145$, the ratio of the imaginary and the real part of the elastic amplitude, as taken from COMPETE extrapolation
- This leads to a TOTEM $d\sigma/dt(t=0)$ at the OP of 357.1 \pm 26.4 mb/GeV²
- D0 measured the optical point of $d\sigma/dt$ at small t: $341\pm48 \text{ mb/GeV}^2$
- \bullet TOTEM data rescaled by 0.954 \pm 0.071
- NB: We do not claim that we performed a measurement of $d\sigma/dt$ at the OP at t = 0 (it would require additional measurements closer to t = 0), but we use the two extrapolations simply in order to obtain a common and somewhat arbitrary normalization point

Predictions at $\sqrt{s} = 1.96$ TeV

- Reference points at 1.96 TeV (extrapolating TOTEM data) and 1σ uncertainty band
- Comparison with D0 data

Additional measurement in TOTEM: ρ

• Measure elastic scattering at very low t: Coulomb-Nuclear interference region

$$rac{d\sigma}{dt} \sim |A^C + A^N(1 - lpha G(t))|^2$$

- The differential cross section is sensitive to the phase of the nuclear amplitude
- In the CNI region, both the modulus and the phase of the nuclear amplitude can be used to determine $\rho = \frac{Re(A^N(0))}{Im(A^N(0))}$ where the modulus is constrained by the measurement in the hadronic region and the phase by the *t* dependence

A reminder: ρ and σ_{tot} measurements as an indication for odderon

- Using low |t| data in the Coulomb-nuclear interference region, measurement of ρ at 13 TeV: $\rho = 0.09 \pm 0.01$ (EPJC 79 (2019) 785)
- Combination of the measured ρ and σ_{tot} values not compatible with any set of models without odderon exchange (COMPETE predictions above as an example)
- This result can be explained by the exchange of the Odderon in addition to the Pomeron

- Combination with the independent evidence of the odderon found by the TOTEM Collaboration using ρ and total cross section measurements at low t in a completely different kinematical domain
- For the models included in COMPETE, the TOTEM ρ measurement at 13 TeV provided a 3.4 to 4.6 σ significance, to be combined with the D0/TOTEM result
- The combined significance ranges from 5.3 to 5.7 σ depending on the model
- Models without colorless *C*-odd gluonic compound are excluded including the Durham model and different sets of COMPETE models (blue, magenta and green bands on the previous slide)

Mueller Tang: Gap between jets at the Tevatron and the LHC

- Looking for a gap between two jets: Region in rapidity devoid of any particle production, energy in detector
- Exchange of a BFKL Pomeron between the two jets: two-gluon exchange in order to neutralize color flow
- Method to test BFKL resummation: Implementation of BFKL NLL formalism in HERWIG/PYTHIA Monte Carlo

LHC: Measurement of jet gap jet fraction (CMS)

- Measurement of fraction of jet gap jet events as a function of jet Δη, p_T, ΔΦ (Phys.Rev.D 104 (2021) 032009)
- Comparison with NLL BFKL (with LO impact factors) as implemented in PYTHIA, and soft color interaction based models (Ingelman et al.)
- Disagreement between BFKL and measurements ($\Delta\eta$ dependence): What is going on?

Jet gap jet: Full NLO BFKL calculation including NLO impact factor

• Combine NLL kernel with NLO impact factors (Hentschinski, Madrigal, Murdaca, Sabio Vera 2014)

- Gluon Green functions in red
- Impact factors in green
- Will lead to an improved parametrisation to be implemented in HERWIG/PYTHIA
- D. Colferai, F. Deganutti, T. Raben, C. Royon, JHEP 06 (2023) 091

Effect of NLO impact factor on jet gap jet cross section: final results

- Higher cross section by 20% at high p_T and small effect on the y dependence
- Total uncertainties are much smaller at NLO: 15-20%

Jet gap jet measurements at the LHC (CMS@13 TeV)

- Implementation of BFKL NLL formalism in Pythia and compute jet gap jet fraction
- Dijet cross section computed using POWHEG and PYTHIA8
- Three definitions of gap: theory (pure BFKL), experimental (no charged particle above 200 MeV in the gap $-1 < \eta < 1$) and strict gap (no particle above 1 MeV in the gap region) (C. Baldenegro, P. Gonzalez Duran, M. Klasen, C. Royon, J. Salomon, JHEP 08 (2022) 250)
- Two different CMS tunes: CP1 without MPI, CP5 with MPI

Charged particle distribution

- Disitribution of charged particles from PYTHIA in the gap region $-1 < \eta < 1$ with ISR ON (left) and OFF (right)
- Particles emitted at large angle with $p_T > 200$ MeV from initial state radiation have large influence on the gap presence or not, and this on the gap definition (experimental or strict)

Jet gap jet events in diffraction (CMS/TOTEM)

- Jet gap jet events: powerful test of BFKL resummation C. Marquet, C. Royon, M. Trzebinski, R. Zlebcík, Phys. Rev. D 87 (2013) 3, 034010
- Subsample of gap between jets events requesting in addition at least one intact proton on either side of CMS
- Jet gap jet events were observed for the 1st time by CMS! (Phys.Rev.D 104 (2021) 032009)

First observation of jet gap jet events in diffraction (CMS/TOTEM)

- \bullet First observation: 11 events observed with a gap between jets and at least one proton tagged with $\sim 0.7~{\rm pb}^{-1}$
- Leads to very clean events for jet gap jets since MPI are suppressed and might be the "ideal" way to probe BFKL
- Would benefit from more stats $>10 \text{ pb}^{-1}$ needed, 100 for DPE

Conclusion

- Total and elastic cross sections measured by the TOTEM collaboration at 2.76, 7, 8 and 13 TeV: non-exponential behavior of $d\sigma/dt$
- Detailed comparison between $p\bar{p}$ (1.96 TeV from D0) and pp (2.76, 7, 8, 13 TeV from TOTEM) elastic $d\sigma/dt$ data FERMILAB-PUB-20-568-E; CERN-EP-2020-236, accepted in PRL
- pp and $p\bar{p}$ cross sections differ with a significance of 3.4 σ in a model-independent way and thus provides evidence that the Colorless *C*-odd gluonic compound i.e. the odderon is needed to explain elastic scattering at high energies
- When combined with the ρ and total cross section result at 13 TeV, the significance is in the range 5.3 to 5.7 σ and thus constitutes the first experimental observation of the odderon: Major discovery at CERN/Tevatron
- New scaling observed in elastic $d\sigma/dt$ data: Proton as a black disk at low b?
- Jet gep jet events at the LHC

We need to look everywhere! For instance using intact protons...

