

Monte Carlo Event Generators

Alan Price Midsummer school in QCD 2024 Saariselkä

JAGIELLONIAN UNIVERSITY In Kraków

Structure of LHC Events

Radiative Corrections

Hadronization

Underlying Event

Multijet Merging

Parton shower resums logarithms and is a good description of collinear/ soft emissions jet evolution (Large Logs)

Matrix elements at given order is fair description of hard/large-angle emissions jet production (small logs)

"Merge" both approaches

Matching

 Parton shower resums logarithms and is a good description of collinear/ soft emissions jet evolution (Large Logs)
 Matrix elements at given order is fair description of hard/large-angle emissions jet production (small logs)
 "Match" both approaches:

Cross section at **NLO accuracy** and correct the hardest emission in PS to reproduce ME element

Matching at LO

Matching at LO is essentially trivial

Trivial if you know how to calculate both LO ME and PS

Matching at NLO

Matching at NLO?

$$\langle O \rangle^{NLOPS} = \int d\Phi_n \left[B(\Phi_n + \int d\Phi_{n+1}) \right]$$

First bracket seems fine but we have a problem in the second

R and S have different PS contributions: IR subtraction will be spoilt

 $[\Phi_n] + V(\Phi_n) + I(\Phi_n)] PS(\Phi_n)$

 $\left[R(\Phi_{n+1})PS(\Phi_{n+1}) - S(\Phi_n \otimes \Phi_1)PS(\Phi_n)\right]$

Reminder

NLO cross section: $d\sigma_n^{NLO} = d\Phi_n \left[B(\Phi_n) + V(\Phi_n) \right]$ $= d\Phi_n \bar{B}(\Phi_n)$

Splitting Kernels:

$$d\Phi_1 \frac{R(\Phi_{n+1})}{B(\Phi_n)}$$
 IR Limit

 $\frac{R(\Phi_{n+1})}{1}$ in the soft/collinear regions of phasespace $B(\Phi_n)$

+
$$I(\Phi_n) + \int d\Phi_{n+1} \left(R(\Phi_{n+1}) - S(\Phi_{n+1}) \right)$$

$$d\Phi_1 \frac{\alpha_s}{2\pi} K_{ij,k}(\Phi_{ij,k})$$

$K_{ij,k}$ reproduces the process-independent behaviour of

POWHEG

$$d\Phi_1 \frac{R(\Phi_{n+1})}{B(\Phi_n)}$$

Define a modified Sudakov Form Factor

$$\Delta_{N}^{K}(\mu_{N}^{2}, t_{0}) = \exp\left[-\int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} K_{ij,k}(t, z, \phi)\right]$$

Assumes factorization of phasespace $\Phi_{n+1} = \Phi_n \otimes \Phi_1$ $\[\] \alpha_{s} \]$ will typically vary with the shower scale

[Alioli,Nason,Oleari,Re] arXiv:0812.0578

 $d\Phi_1 \frac{\alpha_s}{2\pi} K_{ij,k}(\Phi_{ij,k})$

$$\Delta_{N}^{R/B}(\mu_{N}^{2}, t_{0}) = \exp\left[-\int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \frac{R(\Phi_{n+1})}{B(\Phi_{n})}\right]$$

POWHEG

Generate Emissions with Sudakov Form Factor

$$d\sigma^{NLO} = d\Phi_n \bar{B}(\Phi_n) \left[\Delta_n^{R/B}(\mu^2, t_0) + \int_{t_0}^{\mu_n^2} d\Phi_1 \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Delta_n^{R/B}(\mu_n^2, t(\Phi_1)) \right]$$

MCaNLO

Basic idea: divide *R* into **soft(S)** and **hard (H)** part $R = R^S + R^H =$

• We can identify the subtraction term dS_1 with the kernels $dS_1 = \sum K_{ij,k}$

$$d\sigma^{NLO} = d\Phi_n \tilde{B}(\Phi_n) \left[\Delta_n^{R/B}(\mu^2, t_0) + \int_{t_0}^{\mu_n^2} d\Phi_1 \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Delta_n^{R/B}(\mu_n^2, t(\Phi_1)) \right] + d\Phi_{n+1} H(\Phi_{n+1})$$

 $\tilde{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + I(\Phi_n)$

$$= B \otimes dS_1 + H_n$$

MC(aNLO

$$d\sigma^{NLO} = d\Phi_n \tilde{B}(\Phi_n) \left[\Delta_n^{R/B}(\mu^2, t_0) + \int_{t_0}^{\mu_n^2} d\Phi_1 \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Delta_n^{R/B}(\mu_n^2, t(\Phi_1)) \right] + d\Phi_{n+1} H(\Phi_{n+1})$$

$$\tilde{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + I(\Phi_n)$$

Essentially MC@NLO decomposes the real emission into a part driven by the shower and a hard remainder Virtual corrections are only applied to emissions generated by the shower

regions of phase space inaccessible to the PS

POWHEG/MC@NLO

$t\bar{t}$ production arX

arXiv:1610.09978

12

Inclusive jet production at the LHC

Inclusive jet production at the LHC

*m*₁₂ [TeV]

 m_{12} [GeV]

POWHEG/MC@NLO

POWHEG

Positive Weights (Nearly) always):

POWHEG-Box

MC@NLO

Resummation is unchanged :)

Negative Weights :(

Structure of LHC Events

Radiative Corrections

Underlying Event

Hadronization

At short distances $q\bar{q}$ are relatively free

At long distances the strong forces starts to dominate

From lattice we see that the QCD potential is approximately linear

Linear Potential = Confinement

Lund String Model

Assume that light quarks are connected by "Strings"

New $q\bar{q}$ are created by tunnelling with prob $\approx e^{-\frac{\pi m_q^2}{\sigma}}$, where σ is the string tension

 $\sqrt[4]{q} \bar{q}$ pairs can "yo-yo" allowing them to be more dynamical

Hadrons are then formed from the multiple breakup of strings to more $q\bar{q}$ pairs

Andersson, Gustafson, Ingelman, Sj"ostrand PR97(1983)31

Lund String Model

Gluons can be considered "kinks" in the string, with the gluon experiencing twice the string force

Also see this from the associated Casamir operators

This means hadron production is enhanced in regions dominated with qg or $g\bar{q}$ pairs while suppressed in $q\bar{q}$

Andersson, Gustafson, Ingelman, Sj ostrand PR97 (1983) 31

Cluster Model

Cluster models are based on the idea of preconfinement

At the end of the Parton Shower all gluons are forced to split into $q\bar{q}$ pairs.

Color pairs end-up close together in phasespace

Phasespace tells us how the clusters decay into hadrons

[Webber] NPB238(1984)492

Cluster Model

M_{clus} [GeV]

21

We see that the cluster mass peaks around 1GeV, regardless of the CME

This shows the independence of the cluster at the end of the Parton shower from the hard scale

String vs Cluster

program model

energy-momentum pictur

parameters

flavour composition

parameters

"There ain't no such thing as a parameter-free good description"

[T.Sjöstrand]

	PYTHIA	Herwig
	string	cluster
re	powerful	simple
	predictive	unpredictive
	few	many
	few messy	many simple
	few messy unpredictive	many simple in-between
	few messy unpredictive many	many simple in-between few

Structure of LHC Events

Hadronization

Underlying Event

Multi-Parton Interactions

$\sigma_{\text{total}} = \sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

σ total = $\sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

	->-		
•			
•			
•			
•			

$\sigma_{\text{total}} = \sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

Single diffraction

ARI	ai se	J		1.00		288	24
-1-2.6	7.63	1.52	193	2.25	2.9.	-7-5	28
	-						
•							
•							
•							
•							
-							
	~						

σ total = $\sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

Double diffraction

σ total = σ Elastic + σ Single Diffractive + σ Double Diffractive + σ Non Diffractive

(multiple/soft) interactions

σ total = $\sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

σ total = $\sigma_{\text{Elastic}} + \sigma_{\text{Single Diffractive}} + \sigma_{\text{Double Diffractive}} + \sigma_{\text{Non Diffractive}}$

Pedestal Height

Hard Scattering + Underlying Event

Modelling the Pedestal

[Sjöstrand,Zijl] PRD36(1987)2019

Total LHC cross section is exceeded at low p_T

We can interpret this as additional partonparton scattering per proton collision

$$\langle n \rangle = \frac{\sigma_{\text{Hard}}}{\sigma_{\text{Non Diffractive}}}$$

Main free parameter is P_{Tmin}

Modelling the Pedestal

[Sjöstrand,Zijl] PRD36(1987)2019

 We will have n independent secondary interactions
 Model each as a perturbative interaction with a non-perturbative form-factor correction

Color connections and beam remnants

Secondary scatterings need to be colorconnected to something

Simplest model would decouple them from proton remnants

Newer models embed scattering into color topology

[Sjöstrand,Skands] hep-ph/0402078

A model for minimum bias

Peripheral collision of particles in a collision

Take the parton distribution in a beam as

$$\frac{\mathrm{d}n_a(x,\mathbf{b})}{\mathrm{d}^2\mathbf{b}\mathrm{d}x} = f_a(x)\,G(\mathbf{b})$$

$$G(\mathbf{b}) = \int \frac{\mathrm{d}^2 \mathbf{k}}{(2\pi)^2} \frac{\exp(\mathbf{k} \cdot \mathbf{b})}{(1 + \mathbf{k}^2/\mu^2)^2}$$

Structure of LHC Events

Radiative Corrections

Hadronization

Underlying Event

Hadron Decays

Most hadrons are unstable and will **decay** \checkmark In practice there are $\approx \mathcal{O}(1000)$ decay channels PDG contains tables of branching ratios Issues

Not all resonances have been measured

BR rarely add up to 100% and some have large uncertaintight

Can lead to non-trivial effects in the hadronization, event shapes, etc..

	Scale factor,	′ р
η DECAY MODES	Fraction (Γ_i/Γ) Confidence leve	l (MeV/ <i>c</i>)
	Neutral modes	
neutral modes	(71.96 ± 0.30) % S=1.3	3 –
2γ	(39.36 ± 0.18) % S=1.1	. 274
$3\pi^0$	(32.57 ± 0.21) % S=1.2	2 179
$\pi^{0}2\gamma$	$(2.55\pm0.22) \times 10^{-4}$	257
$2\pi^0 2\gamma$	$< 1.2 \times 10^{-3} CL=90\%$	238
4 γ	$< 2.8 \times 10^{-4} CL=90\%$	274
invisible	$< 1.0 \times 10^{-4} CL=90\%$. –
	Charged modes	
charged modes	$(28.04 \pm 0.30)\%$ S=1.3	. –
$\pi^+\pi^-\pi^0$	(23.02 ± 0.25) % S=1.2	2 174
$\pi^+\pi^-\gamma$	(4.28±0.07) % S=1.1	. 236
$e^+ e^- \gamma$	(6.9 \pm 0.4) \times 10 ⁻³ S=1.2	2 274
$\mu^+ \mu^- \gamma$	(3.1 \pm 0.4) $ imes$ 10 $^{-4}$	253
e^+e^-	$< 7 \times 10^{-7} CL=90\%$	274
$\mu^+\mu^-$	(5.8 ± 0.8) $ imes 10^{-6}$	253
$2e^+2e^-$	(2.40 \pm 0.22) $ imes$ 10 $^{-5}$	274
$\pi^+\pi^-e^+e^-(\gamma)$	$(2.68\pm0.11) imes10^{-4}$	235
e $^+$ e $^-\mu^+\mu^-$	$< 1.6 \times 10^{-4} CL=90\%$	253
$2\mu^+2\mu^-$	(5.0 ± 1.3) $ imes 10^{-9}$	161
$\mu^+\mu^-\pi^+\pi^-$	$< 3.6 \times 10^{-4} CL=90\%$	113
$\pi^+ e^- \overline{\nu}_e + \text{c.c.}$	$< 1.7 \times 10^{-4} CL=90\%$	256
$\pi^+\pi^-2\gamma$	$< 2.1 \times 10^{-3}$	236
$\pi^+\pi^-\pi^0\gamma$	$< 6 \times 10^{-4} CL=90\%$	o 174
$\pi^0 \mu^+ \mu^- \gamma$	$< 3 \times 10^{-6} CL=90\%$	210

S. Navas et al. (Particle Data Group), to be published in Phys. Rev. D 110, 030001 (2024)

Structure of LHC Events: Conclusion

Hadronization

Underlying Event

Sherpa 3.0.0 "Erebus"

New major release of Sherpa happened this week

Culmination of many years of work

Issue/feature request on gitlab

page

https://sherpa-team.gitlab.io

Sherpa 3.0.0 "Erebus"

Physics Improvements and New Capabilities

- NLO EW corrections for fixed-order predictions
- Polarized cross sections for massive vector bosons !619
- EW Sudakov logarithms (!831, !464)
- Improved scale setting for VBF processes !723
- Add model for instanton production (!813, !476, !447, !366)
- Photoproduction at MC@NLO accuracy !448
- New MPI and MinBias modelling including photon MPIs !687
- Photon splittings in YFS resummation (!641, !660, !663)
- YFS for initial state radiation in lepton-lepton collisions **!830**
- Add simple color reconnection model (!361, !201, !173)
- !774
- Implement UFO 2.0 support for handling form factors **!834**
- Additional new ME interfaces for external generators !419
 - Support for the MCFM BLHA interface
 - Support for MadLoop
 - Comix/Amegic programmatic interface to external generators
 - Support for resummation and full / leading color ME corrections
- First version of BLHA2 support (tested with GoSam for ee->bb) !390

• Add Recola interface !463, including but not limited to on-/off-shell W+W+jj production for both t-channel (VBS) and s-channel (W+W+W-) production !849 • Upgrade embedded Lund hadronisation implementation from Pythia 6 to Pythia 8

• New on-the-fly variations for the merging cut (QCUT) parameter and for AlphaS(MZ). The latter can now be used instead of relying on implicit variations via PDF variations, e.g. to vary the strong coupling for lepton collider setups !295

YAML Input

```
(run){
    # general settings
    EVENTS 25000;
```

```
# collider setup
BEAM_1 2212; BEAM_ENERGY_1 6500;
BEAM_2 2212; BEAM_ENERGY_2 6500;
```

```
# generator parameters
WIDTH[6] 0;
```

```
# scale choice
CORE_SCALE VAR{sqr(175)};
HARD_DECAYS=1
WIDTH[6] 0;
```

```
# settings to accelerate event generation
MI_HANDLER None;
FRAGMENTATION Off;
}(run);
```

```
(processes){
    Process 93 93 -> 6 -6 93{1};
    CKKW sqr(20/E_CMS);
    Order (*,0);
    End process;
}(processes);
```

```
# collider setup
BEAMS: 2212
BEAM_ENERGIES: 6500
# scales
EXCLUSIVE_CLUSTER_MODE: 1
MEPS:
  CORE_SCALE: TTBar
# me generator settings
ME_GENERATORS: [Comix, Amegic]
# decays
HARD_DECAYS:
  Enabled: true
 Channels:
   24,2,-1: {Status: 0}
   24,4,-3: {Status: 0}
   -24,-2,1: {Status: 0}
    -24,-4,3: {Status: 0}
PARTICLE_DATA:
 6: {Width: 0}
# on-the-fly variations
SCALE_VARIATIONS: 4.0* # 7-point scale variations
PROCESSES:
- 93 93 -> 6 -6 93{1}:
    Order: {QCD: 2, EW: 0}
    CKKW: 20
```

EW Corrections

Polarised Cross-Sections

https://arxiv.org/pdf/2310.14803

42

EW Sudakovs

EW Sudakov approximation for parton showered event generation

43

