

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Astroteilchenphysik, Karlsruhe, Germany

Midsummer School in QCD, Saariselkä, Finland July the 2nd 2024

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Astroteilchenphysik, Karlsruhe, Germany

Midsummer School in QCD, Saariselkä, Finland July the 2nd 2024

Soft QCD and the Production of Secondary Cosmic Rays

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Astroteilchenphysik, Karlsruhe, Germany

Midsummer School in QCD, Saariselkä, Finland July the 2nd 2024

Cosmic Rays (CR)

Cosmic Rays (CR)

Primary CR

Secondary CR

Cosmic Rays (CR)

Primary CR

Secondary CR

Soft QCD interactions \rightarrow "application" of QCD to "real" world

History

- Victor Hess discovered in 1912 that natural radioactivity was increasing with height
 - ➡ radiation from space
- Pierre Auger discovered air showers in 1937
 - secondary particles produced by primary cosmic rays
- until ~1950 particle physics was studied thanks to cosmic rays
 - all first unstable particles discovered in cosmic rays
 - muon, pion, strangeness …
 - cosmic rays could not be used for astrophysics
- after first start of accelerators, things changed ... until now !

Sources

T. Pierog, KIT - 8/49

Energy Spectrum

Cosmic Rays – 2024

T. Pierog, KIT - 9/49

UHECR Composition

With muons current CR data are impossible to interpret

- Very large uncertainties in model predictions
- Mass from different element incompatible because of soft QCD treatment

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

H. Dembinski UHECR 2018 (WHISP working group)

Astroparticles

From R. Ulrich (KIT)

- Astronomy with high energy particles
 - gamma (straight but limited energy due to absorption during propagation)
 - neutrino (straight but difficult to detect)
 - charged ions (effect of magnetic field)
- Measurements of charged ions
 - source position (only for light and high E)
 - energy spectrum (source mechanism)
 - mass composition (source type)
 - light = hydrogen (proton)
 - heavy = iron (A=56)
 - test of hadronic interactions in EAS via correlations between observables.

mass measurements should be consistent and lying between proton and iron simulated showers if physics is correct

From R. Ulrich (KIT)

- Astronomy with high energy particles
 - gamma (straight but limited energy due to absorption during propagation)
 - neutrino (straight but difficult to detect)
 - charged ions (effect of magnetic field)
- Measurements of charged ions
 - source position (only for light and high E)
 - energy spectrum (source mechanism)
 - mass composition (source type)
 - light = hydrogen (proton)
 - heavy = iron (A=56)
 - test of hadronic interactions in EAS via correlations between observables.
- Gravitationnal waves
 - Source position
 - Source mass

(Extensive) Air Showers (EAS)

Extensive Air Shower

From R. Ulrich (KIT)

 $A + air \rightarrow hadrons$ $p + air \rightarrow hadrons$ $\pi + air \rightarrow hadrons$ intial γ from π^0 decay $e^{\pm} \rightarrow e^{\pm} + \gamma$ $\gamma \rightarrow e^{+} + e^{-}$

main source of uncertainties

well known

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$$

Cascade of particle in Earth's atmosphere

Number of particles at maximum

- ➡ 99,88% of electromagnetic (e/m) particles
- 0.1% of muons
- 0.02% hadrons

Energy

from 100% hadronic to 90% in e/m + 10% in muons at ground (vertical)

Extensive Air Shower Observables

J.Oehlschlaeger, R.Engel, FZKarlsruh

Lateral development

- ➡ particle density at ground vs distance to the impact point (core) = Lateral distribution function (LDF)
- can be muons or electrons/gammas or a mixture of all.
- **Observables**
 - Particles at ground, fluorescence light, radio emission, cherenkov light ...

High Energy Measurements

Pierre Auger Observatory (PAO)

- 🔶 Mendoza, Argentina
- Southern Hemisphere
- → 3000 km²: 32000 km²/sr/yr
- Telescope Array (TA)
 Utah, USA
 - Northern Hemisphere
 - ➡ 680 km²: 3700 km²/sr/yr

Low Energy Measurements (some)

Kascade (Germany)

Grapes 3 (India)

LHAASO (China)

IceTop (above IceCube)

T. Pierog, KIT - 17/49

Outline

- EAS : Longitudinal distributions
 - → Heitler model: X_{max}
 - Longitudinal Profile
 - Energy Deposit

- EAS : Particles at ground
 - Heitler model: N_µ
 - Particles at ground
 - Muon puzzle
 - Muon production depth

- EAS : Link with hadronic interactions
 - Hadronic Observables
 - Hadronic interaction models for Cosmic Rays

.

Hadronic observables

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

- 2 particles produced with equal energy
- \rightarrow electromagnetic interaction length (37g/cm²) : λ_{e}

Hadronic observables

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

- 2 particles produced with equal energy
- \rightarrow electromagnetic interaction length (37g/cm²) : λ_{e}

2ⁿ particles after n interactions

$$n = X / \lambda_e$$

$$N(X) = 2^{n} = 2^{X/\lambda_{e}} \qquad E(X) = E_{0}/2^{X/\lambda_{e}}$$

Assumption: shower maximum reached if $E(X) = \underline{E}_c$ (critical energy)

Hadronic observables

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

- 2 particles produced with equal energy
- \rightarrow electromagnetic interaction length (37g/cm²) : λ_{e}

2ⁿ particles after n interactions

$$n = X / \lambda_{e}$$

$$N(X) = 2^{n} = 2^{X/\lambda_{e}} \qquad E(X) = E_{0}/2^{X/\lambda_{e}}$$

Assumption: shower maximum reached if $E(X) = \underline{E}_c$ (critical energy)

$$N_{max} = E_0 / E_c$$
 $X_{max} \sim \lambda_e \ln(E_0 / E_c)$

T. Pierog, KIT - 21/49

Toy Model for Hadronic Cascade

Primary particle : hadron

Using a simple generalized Heitler model to understand EAS characteristics :

fixed interaction length

$$\lambda_{ine} = \langle Air \rangle / (A.\sigma_{ine})$$

- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions decaying in 2 photons).

J. Matthews, Astropart.Phys. 22 (2005) 387-397

Hadronic observables

Toy Model for Hadronic Cascade

Shower development dominated by first (highest energy $E_0/(2N_{tot}))$ produced em particle:

$$X_{max} \sim \lambda_e \ln \left(E_0 / (2.N_{tot}) / E_c \right) + \lambda_{ine}$$

Primary particle : hadron

Using a simple generalized Heitler model to understand EAS characteristics :

fixed interaction length

$$\lambda_{ine} = \langle Air \rangle / (A . \sigma_{ine})$$

- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions decaying in 2 photons).

J. Matthews, Astropart.Phys. 22 (2005) 387-397

Energy deposit

Muons

Hadronic observables

Superposition Model

Primary nucleus with mass A and energy E

equivalent to A proton showers with energy E/A

$$X_{max}(A) \sim \lambda_e \ln \left(E_0 / (2.N_{tot}) / E_c / A \right) + \lambda_{nuc}$$

• Theorem: Elongation rate (slope of X_{max}) < radiation length (λ_e) in air for constant primary composition

Energy deposit

Muons

Hadronic observables

Superposition Model

Primary nucleus with mass A and energy E

equivalent to A proton showers with energy E/A

$$X_{max}(A) \sim \lambda_e \ln \left(E_0 / (2.N_{tot}) / E_c / A \right) + \lambda_{nuc}$$

• Theorem: Elongation rate (slope of X_{max}) < radiation length (λ_e) in air for constant primary composition

$$D = \frac{dX_{max}}{dln(E)} \sim \lambda_e (1 - B_N - B_\lambda - B_A)$$

Multiplicity evolution

 $B_N = \frac{dlnN_{tot}}{dln(E)} \sim cst > 0$

Cross-section evolution

$$B_{\lambda} = \frac{-\lambda_{ine}}{\lambda_{e}} \frac{dln \lambda_{ine}}{dln(E)} \sim cst > 0$$

Mass evolution

$$B_A = \frac{dlnA}{dln(E)}$$

Heitler

Energy deposit

Muons

Hadronic observables

Mean AND Fluctuations

Example: event measured by Auger Collab. (ICRC 2003)

Both mean and fluctuations of X_{max} are important for mass composition measurements

Hadronic observables

X_{max} fluctuations

- Basic model predictions :
 - Superposition model
 - 🔶 mean:
 - fluctuations:

 $\mu_X(A, E) = \mu_X(p, E/A)$ $\sigma_X(A) = \frac{1}{\sqrt{A}}\sigma_X(p)$

Nuclear cross section and fragmentation

- mean:
- fluctuations:

 $\mu_X(A, E) \approx \mu_X(p, E/A)$ (!) $\sigma_X(A) \gg \frac{1}{\sqrt{A}} \sigma_X(p)$

Extreme cases :

single spectator nucleus

(by M. Unger)

 $< \sigma_X(A) <$

ladronic observables

Model Consistency using Electromagnetic Component

Study by Pierre Auger Collaboration (ICRC 2017) → std deviation of InA allows to test model consistency.

Energy of hadronic interactions for X_{max}

Electrons

Shower particles produced in 100 interactions of highest energy

Electrons/photons: high-energy interactions

Fluctuations mainly coming from the first hadronic interaction.

Energy Transfer : Energy Deposit

Real Energy Deposit

Ionization process :

all charged particles : all energy loss converted to energy deposit

Energy deposit proportional to total number of charged particles

Particle below threshold

- all particles (but neutrinos) : part of particle energy converted to energy deposit
 - for EM particles : all energy is deposited
 - for muons : part of the energy is deposited (neutrino)
 - for charged mesons : 25% of E_k in energy deposit
 - for neutral kaons : 50% of E_k in energy deposit
 - for other hadrons : 100% of E_k in energy deposit

Energy deposit

Muons

Hadronic observables

Energy Deposit

 Main uncertainty from unknown mass (~5-2%) From Heitler model

$$E_{em} = \left[1 - \left(\frac{N_{em}}{N_{tot}}\right)^{n(A)}\right] E_0$$

- Energy deposit depends on total number of muons
 - Primary mass dependent

Hadronic observables

Toy Model for Hadronic Cascade

J. Matthews, Astropart.Phys. 22 (2005) 387-397

Primary particle : hadron

Using a simple generalized Heitler model to understand EAS characteristics :

- fixed interaction length
- equally shared energy
- ➡ 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions).

Hadronic observables

Toy Model for Hadronic Cascade

Primary particle : hadron

N_{had}ⁿ particles can produce muons after n interactions

 $N(n) = N_{had}^n$

 N_{tot}^{n} particles share E_0 after *n* interactions

 $E(n) = E_0 / N_{tot}^n$

Assumption: particle decay to muon when $E = \underline{E}_{dec}$ (critical energy) after n_{max} generations

$$n_{max} = \frac{\ln(E_0/E_{dec})}{\ln(N_{tot})} \qquad \ln(N_{\mu}) = \ln(N(n_{max})) = n_{max}\ln(N_{had})$$

Cosmic Rays - 2024

 $E_{dec} = E_0 / N_{tot}^{n_{max}}$

Energy deposi

Muons

Muon Number

From Heitler

$$N_{\mu} = \left(\frac{E_0}{E_{dec}}\right)^{\beta}, \quad \beta = \frac{\ln N_{had}}{\ln \left(N_{had} + N_{em}\right)}$$

In real shower, not only pions : resonances, Kaons and (anti)Baryons (but less ...)

Energy deposi

Muons

Superposition Model

Primary nucleus with mass A and energy E

equivalent to A proton showers with energy E/A

$$N_{\mu}(A) = A \left(\frac{E_0 / A}{E_{dec}} \right)^{\beta} \qquad \beta \sim 0.925$$

More muons from primary nucleus

$$N_{\mu}(A) = N_{\mu}(p) A^{1-\beta}$$

Cosmic Rays - 2024

T. Pierog, KIT - 37/49

Particles at Ground

KASCADE-GRANDE

Particles at ground of various types

- Electron and photons directly linked to the longitudinal profile (X_{max} fluctuations) and strongly attenuated by the atmosphere
- Hadrons are rare
- Muons suffer little attenuation and less fluctuations.
 - Only muons at large distances and for very inclined showers
- LDF different for different particles and primary masses
 - different production height and attenuation
- Utilize correlations between Ne and N_{mu} to determine the mass spectra
 - Correlations increase
 - discrimination power

Heitler

Muons

Auger Event-by-Event E~10¹⁹ eV

Top-down reconstruction

- Measure longitudinal profile and LDF at the same time
- \rightarrow Direct comparison between data and simulation (fixed energy and X_{max})

A problem appear : not enough signal at ground in simu : missing muons !

Different energy or mass scale cannot change the slope

Different property of hadronic interactions at least above 10¹⁶ eV

leitler

Energy deposi

Muons

Hadronic observables

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy
 β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - β changes the muon energy evolution but not X_{max}

$$\beta = \frac{\ln (N_{mult} - N_{\pi^0})}{\ln (N_{mult})} = 1 + \frac{\ln (1 - c)}{\ln (N_{mult})}$$

→ +4% for β → -30% for
$$c = \frac{N}{N_n}$$

→ Measure@LHC:
$$R = \frac{E_{e/m}}{E_{had}} \approx \frac{c}{1-c}$$
 -

$$N_{\mu} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

 $X_{max} \sim \lambda_e \ln \left(E_0 / (2.N_{mult} \cdot A) \right) + \lambda_{ine}$

 $E_0 = 10^{19} \,\mathrm{eV}$

T. Pierog, KIT - 41/49

Muon Production Depth

Independent SD mass composition measurement

- Use time distribution of muons at ground
- geometric delay of arriving muons

c

$$t_{g} = \frac{l}{l} - (z - \Delta)$$
$$= \sqrt{r^{2} + (z - \Delta)^{2}} - (z - \Delta)$$

mapped to muon production distance

$$z = \frac{1}{2} \left(\frac{r^2}{ct_{\rm g}} - ct_{\rm g} \right) + \Delta$$

- Position of the maximum production depends on primary mass
 - Different than Xmax (do not depend only on the first interactions)
 - Very sensitive to hadronic interactions (all generations)

Heitler

Muon Production Depth and Models

2 independent mass composition measurements

- both results should be between p and Fe
- ➡ both results should give the same mean logarithmic mass for the same model
- problem with EPOS appears after corrections motivated by LHC data

Muon production by low energy interactions

Cosmic Rays – 2024

Relevant Phase Space in Air Showers

- Muon production in air showers dominated by forward produced for particles
 - True at high energy
- Midrapidity production important in the last generations and for muon at large distances from the shower core
 - Low energy data as important than high energy data

Maximilian Reininghaus, ICRC2021

Energy deposit

Muons

Hadronic observables

LHC acceptance

- p-p data mainly from "central" detectors
 - → pseudorapidity η =-ln(tan(θ /2))
 - \bullet $\theta=0$ is midrapidity
 - \bullet θ >>1 is forward
 - \bullet θ << 1 is backward
- Different phase space for LHC and air showers
 - most of the particles produced at midrapidity
 - important for models
 - most of the energy carried by forward (backward) particles

important for air showers

Lessons From Heitler Model

Important hadronic interaction parameters :

- For X_{max} :
 - Cross section
 - Multiplicity
 - (Elasticity: fraction of energy kept in leading hadronic particle)
- For Energy deposit :
 - Elasticity
 - \clubsuit π^0 to all particles ratio
- For the number of muons :
 - Multiplicity
 - \clubsuit π^0 to all particles ratio and baryons

Cross check using modified realistic simulations.

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π-K)-Air)
 - (in)elasticity
 - multiplicity
 - charge ratio and baryon production
- Change of primary = change of hadronic interaction parameters

cross-section, elasticity, mult. ...

With unknown mass composition hadronic interactions can only be tested using various observables which should give consistent mass results

Ultra-High Energy Hadronic Model Predictions

