

Monte Carlo Event Generators

Alan Price (Sherpa) Midsummer school in QCD 2024 Saariselkä

JAGIELLONIAN UNIVERSITY In Kraków

R. K. Ellis, W. J. Stirling, B. R. Webber, **QCD and Collider Physics**

https://scoap3.org/scoap3-books/)

MCNet School slides https://www.montecarlonet.org/schools/

- Campbell, Huston, Krauss, The Black Book of Quantum Chromodynamics (freely available at

Goal

Try to falsify theoretical models by comparison with data:

Define observables that can be measured experimentally

cuts, isolation criteria, etc.

 \checkmark Differential distributions $p_T, \eta, m_x \dots$

Evaluate these observables in the SM and/or your favourite BSM

- \clubsuit Cross section for $pp \rightarrow X$ which is defined in terms of identified particles, acceptance

Goal

We need to calculate the probability of events like this

CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-28 06:09:43.129280 GMT Run / Event / LS: 257645 / 1610868539 / 1073

Goal

Drell-Yan:
$$pp \rightarrow \ell \bar{\ell} + \mathcal{O}(100)$$

Four-Leptons: $pp \rightarrow 4\ell + \mathcal{O}(150)$

 $t\bar{t}$ Production: $pp \rightarrow t\bar{t} + \mathcal{O}(700)$

 $t\bar{t}h$ Production: $pp \rightarrow t\bar{t}h + \mathcal{O}(1200)$

Any event at the LHC will contain large number of particles in the final state that must be modelled

We need to calculate the probability of events like this

Monte Carlo Event Generators

HERWIG

Traditional focus on showers, Qtilde and Dipoles shower, cluster hadronization model, NLO matching and merging.

PYTHIA

Sophisticated soft physics, pt-ordered, DIRE and Vincia shower, string hadronization, NLO merging.

SHERPA

Focus on perturbative improvements, CS and DIRE shower, cluster or string hadronization, NLO matching and merging.

Divide and Conquer

Radiative Corrections

Hadronization

Underlying Event

Divide and Conquer

Radiative Corrections

Hadronization

Underlying Event

How do we calculate observables?

Step 1:

Calculate the matrix element for your process of choice.

Step 2:

Preform the multidimensional integral Next Section

 $\langle O \rangle = \left[d\Phi_n \left[dx_1 \left[dx_2 f_i(x_1, \mu_F^2) \right] \mathcal{M} \left(ab \to X; \mu_F^2, \mu_R^2 \right) \right]^2 f_j(x_2, \mu_F^2) O(\Phi) \right]$

Hard Scattering: Matrix Elements

For low multiplicities we can do it by hand

Automated Tools Matrix Element Generators

CalcHEP

How do we calculate $\left| \mathscr{M} \left(ab \to X; \mu_F^2, \mu_R^2 \right) \right|^2$

Hard Scattering: Matrix Elements

How do we calculate

Textbook: Draw the Feynman diagrams, apply the rules, sum over the external states, find a mistake and start again.

Reality: Realise that amplitudes are just complex numbers. Compute them, then sum and square

$$\mathscr{M}\left(ab \to X; \mu_F^2, \mu_R^2\right) \Big|^2$$

$$B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|$$

$$\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B) O(\Phi_B)$$

There is also a dependence on a scale choice which I will suppress for now

Amplitudes = Complex numbers

With a chosen basis all components of an amplitude can be expressed explicitly

Matrix multiplication is costly! Effort still grows linearly with the number of diagrams

 $\bar{u}(p_1, h_1)\Gamma(p_1, ..., p_{n-1})$

$$B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|^2$$
$$\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B) O(\Phi_B$$

$$, h_1, \ldots, h_{n-1})u(p_n, h_n)$$

Can we improve this?

Calculate once and reuse again.

$$B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|^2$$

$$\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B) O$$

Recurrence Relations

We know that the complexity of amplitudes grows factorial with the number of external legs

Use recurrence relations to reduce the overhead

Britto, Cachazo, Feng NPB715(2005)499

0000000000

Helicity and Color Sums

- Helicity: Not all helicity configurations contribute equally.
- **Solution:** Only generate amplitudes for one helicity configuration and include helicity as a dof in the Phasespace integral
- **Color:** Not all color configurations contribute equally.
- **Solution:** Only generate amplitudes for one helicity configuration and include color as a dof in the Phasespace integral

$$B = \sum_{\text{color,spin}} (A\mathcal{M}) \cdot (A\mathcal{M})^{\dagger}$$

$$\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B) O$$

Recurrence Relations

Final	BG		BCF		CSW	
State	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6 <i>g</i>	14.2	7.19	11.9	59.1	27.8	30.6
7g	58.5	23.7	73.6	646	146	195
8g	276	82.1	597	8690	919	1890
9g	1450	270	5900	127000	6310	29700
10g	7960	864	64000	-	48900	_

tions. Numbers were generated on a 2.66 GHz XeonTM CPU.

Duhr, Höche, Maltoni JHEP08(2006)062

Table 3: Computation time (s) of the $2 \rightarrow n$ gluon amplitudes for 10^4 phase space points, sampled over helicity and color. Results are given for the color-ordered (CO) and the color-dressed (CD) Berends-Giele (BG), Britto-Cachazo-Feng (BCF) and Cachazo-Svrček-Witten (CSW) rela-

NLO Matrix Elements

$$\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R R(\Phi_R) O(\Phi_R)$$

At **NLO** we also have to include real and virtual emissions

 $V(\Phi_B)$ virtual corrections

 $R(\Phi_R)$ real corrections

Individually, both V and R have IR divergences but there sum is IR finite KLN Theorem, however they both live in separate phase spaces

NLO Matrix Elements

$$\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R R(\Phi_R) O(\Phi_R)$$

IR Divergences

Arise in V from integrations over loop momenta

Arise in R from integrations over soft-collinear momenta

For an IR safe observable they must be removed

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

NLO Matrix Elements: Adding Zero

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

$$\langle O \rangle^{NLO} = \int d\Phi_B \, \left[B(\Phi_B) + V(\Phi_B) \right.$$

$$] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) \right] O(\Phi_R)$$

NLO Matrix Elements: Adding Zero

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

$$\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right]$$

We subtract a term from R, removing IR divergences. Now we have to add it back

$$] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) - S(\Phi_R) \right] O(\Phi_R)$$

NLO Matrix Elements: Adding Zero

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

$$\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) + I(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) - S(\Phi_R) \right] O(\Phi_R) + \int d\Phi_R$$

We subtract a term from R, removing IR divergences. Now we have to add it back

Add an integrated subtraction term to the Born phasespace

Real and Virtual Corrections

Real

These are tree-level diagrams, use the same methods as born

Virtual

Reduce 1-loop integral into master integrals

• D,C,B,A,R are coefficients that can be calculated with either tensor reduction or unitarity cuts

tools like ...

- $\mathcal{M}^{\mathsf{loop}} = D \times (\mathsf{Box}) + C \times (\mathsf{Triangle}) + B \times (\mathsf{Bubble}) + A \times (\mathsf{Tadpole}) + R$

 - One-Loop corrections are automated these days with

How do we calculate observables?

Step 1:

Calculate the matrix element for your process of choice.

Step 2:

Preform the multidimensional integral Next Section. Now

 $\langle O \rangle = \left[d\Phi_n \left[dx_1 \left[dx_2 f_i(x_1, \mu_F^2) \right] \mathcal{M} \left(ab \to X; \mu_F^2, \mu_R^2 \right) \right]^2 f_j(x_2, \mu_F^2) O(\Phi) \right]$

Integration

https://xkcd.com/2117/

Integration Tricks

There are some tricks to doing integrals. One is to look them up in a table of integrals. Another is to learn Mathematica

Leonard Susskind

Hit or Miss: Calculating π

$$f(x) = \sqrt{1 - x^2} \ x \in (0, 1)$$

♦ Randomly choose $x, y \in [0,1] \otimes [0,1]$ • If y > f(x) reject point

$$\pi = 4 \int_0^1 f(x) dx \approx 4 \left(\frac{\text{Accepted}}{\text{Total}} \right)$$

Hit or Miss: Limitations

$$f(x) = \frac{M_Z \Gamma_Z}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Not very efficient for narrow resonances

~100k points to get below 1% error

In reality we will have multiple such structures

27

Weights, Averages, and Variance

We can relate the average of f(x) to its integral as:

 $\langle f(x) \rangle = \frac{1}{h - t}$

We can also estimate the average by choosing random points

Notation: We will call $p(x_i)$ ith weight w_i of the event x_i .

$$-\int_{a}^{b} f(x) d(x)$$

Weights, Averages, and Variance

Now that we have an estimate $\langle p(x) \rangle_E$, we can also define its variance

$$\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)$$

So if p(x) has a large variance it will require many samples, as we have seen

Weights, Averages, and Variance

So how do we reduce this variance?

$$\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)$$

We know that a constant function has zero variance. How can we exploit this?

Weights, Averages, and Variance

So how do we reduce this variance?

$$\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)$$

We know that a constant function has zero variance. How can we exploit this?

We need to find a function

$$g(x)$$
 such that $\frac{f(x)}{g(x)} \approx \text{constant}$

Could have non trivial shape e.g Narrow resonances, making it difficult to sample efficiently

 $dxf(x) = dx g(x) \frac{f(x)}{g(x)}$

With a clever choice of g(x) this can be "flattened"

Cost: We no longer sample uniformly

Importance Sampling: Choosing g(x)

First we need to ensure $f(x) \leq g(x)$ (at least in the range of interest)

It must also be relatively simple to integrate as will need to sample from it

 \mathbf{V} How do you get a random number from g(x)?

Sampling by Inversion

 $P(x) = \int dx \, p(x)$

 $\int_{x_{min}}^{y} dx g(x) = \# \int_{x_{min}}^{x_{max}} dx g(x)$ $y = P^{-1} \left(P(x_{min}) + \# \left(P(x_{max}) - P(x_{min}) \right) \right)$

Sampling by Inversion: Simple Example

 $p(x) = \frac{1}{x}, \quad x \in [a, b]$ $P(x) = \ln(x)$ $y = \exp\left(\ln\left(a\right) + \#\left(\ln(b) - \ln(a)\right)\right)$ $y = a \left(\frac{b}{a}\right)^{\#}$

Always good to check the limits of the ran space

 $\# \to 0, y = a$

 $\# \rightarrow 1, y = b$

Importance Sampling

We can integrate f(x) analytically but it is useful to consider using importance sampling

"Perfect Choice" g(x) = f(x)

$$x = M_Z^2 + \tan\left(z_{\min} + \#(z_{\min} - z_{\min})\right)$$
$$y = \#_2\left(\frac{1}{M_Z G_Z}\right) \qquad z_{\min/\max} = \tan^{-1}\left(\frac{s_{\min/\max} - z_{\min}}{M_Z G_Z}\right)$$

Why is the sampling not perfect?

$$f(x) = \frac{M_Z \Gamma_Z}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

39

Importance Sampling

We can integrate f(x) analytically but it is useful to consider using importance sampling

"Perfect Choice" g(x) = f(x)

$$x = M_Z^2 + \tan\left(z_{\min} + \#(z_{\min} - z_{\min})\right)$$
$$y = \#_2\left(\frac{1}{M_Z G_Z}\right) \qquad z_{\min/\max} = \tan^{-1}\left(\frac{s_{\min/\max} - z_{\min}}{M_Z G_Z}\right)$$

We did not update y(x) = f(x)

$$f(x) = \frac{M_Z \Gamma_Z}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2}$$

Importance Sampling

We have seen how we can use importance sampling for a trivial integral. What about real world examples?

What if you have more than one propagator present?

Multi-Channel

Instead of having one simple estimate g(x), we can use multiple separate channels. Assuming we know how to sample from each individual $g_i(x)$

$$g(x) = \sum_{i=1}^{N} \alpha_i g_i(x),$$

$$I \approx E_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)} = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{\sum_{j=1}^N \alpha_j g_j(x)}$$

A channel is chosen at random according to α_i and the sampling proceeds as before. Initially, all channels have equal probability of being picked. They are then updated based an the weight distribution of the channel <u>Comput. Phys. Commun. 83 (1994), 141–146</u>

$$\sum_{i=1}^{N} \alpha_i = 1$$

Multi-Channel

Instead of having one simple estimate g(x), we can use multiple separate channels. Assuming we know how to sample from each individual $g_i(x)$

Example: $q\bar{q} \rightarrow e^+e^-$

 $g(x) = \alpha_1 g_{\gamma}(x) + \alpha_2 g_Z(x) + \alpha_3 g_{ISR}(x)$

The Vegas algorithm is adaptive sampling algorithm developed by G.P Lepage

Vegas can be used approximate the target directly, or it can be used to remap the input variables e.g uniform random numbers

- regions which narrow peaks get more thin bins and regions which are flat get wider ones

Vegas Algorithm

wa ba maca minina minina wa the series and so and so maca market with the series

Visual interpretation

