Alan Price (Sherpa) Midsummer school in QCD 2024 Saariselkä

JAGIELLONIAN UNIVERSITY
IN KRAKÓW

Monte Carlo Event Generators

❖R. K. Ellis, W. J. Stirling, B. R. Webber, **QCD and Collider Physics**

-
-
- ❖Campbell, Huston, Krauss, **The Black Book of Quantum Chromodynamics** (freely available at

<https://scoap3.org/scoap3-books/>)

❖ MCNet School slides **https://www.montecarlonet.org/schools/**

Goal

cuts, isolation criteria, etc.

❖ Evaluate these observables in the SM and/or your favourite BSM

❖ Differential distributions *pT*, *η*, *mx*

-
- **•** Cross section for $pp \rightarrow X$ which is defined in terms of identified particles, acceptance

Try to falsify theoretical models by comparison with data:

Define observables that can be measured experimentally

Goal

We need to calculate the probability of events like this

CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-28 06:09:43.129280 GMT Run / Event / LS: 257645 / 1610868539 / 1073

Goal

$$
\bullet \text{Drell-Yan: } pp \to \ell \bar{\ell} + \mathcal{O}(100)
$$

 \rightarrow **Four-Leptons:** $pp \rightarrow 4\ell + \mathcal{O}(150)$

 \star *t* \bar{t} Production: $pp \rightarrow t\bar{t} + \mathcal{O}(700)$

 \star *tth* Production: $pp \rightarrow t\bar{t}h + \mathcal{O}(1200)$

We need to calculate the probability of events like this

Any event at the LHC will contain large number of particles in the final state that must be modelled

Monte Carlo Event Generators

HERWIG

Traditional focus on showers, Qtilde and Dipoles shower, cluster hadronization model, NLO matching and merging.

PYTHIA

Sophisticated soft physics, pt-ordered, DIRE and Vincia shower, string hadronization, NLO merging.

SHERPA

Focus on perturbative improvements, CS and DIRE shower, cluster or string hadronization, NLO matching and merging.

❖ **Radiative Corrections**

❖ **Hadronization**

❖ **Underlying Event**

Divide and Conquer

❖ **Radiative Corrections**

❖ **Hadronization**

❖ **Underlying Event**

Divide and Conquer

How do we calculate observables?

 $\langle O \rangle = \int d\Phi_n \int dx_1 \int dx_2 f$

Step 1:

Calculate the matrix element for your process of choice.

Step 2:

Preform the multidimensional integral Next Section

 $\mathcal{L}_i^2(x_1, \mu_F^2)$ $\left| \mathcal{M}\left(ab \to X; \mu_F^2, \mu_R^2\right) \right|$ 2 *f* $f_j(x_2, \mu_F^2) O(\Phi)$

Hard Scattering: Matrix Elements

❖ For low multiplicities we can do it by hand

❖ Automated Tools **Matrix Element Generators**

How do we calculate $\mathcal{M}\left(ab \rightarrow X; \mu_F^2, \mu_R^2\right)$ 2

❖ **CalcHEP**

❖**…**

Hard Scattering: Matrix Elements

How do we calculate

² Textbook: Draw the Feynman diagrams, apply the rules, sum over the external states, find a mistake and start again.

❖**Reality:** Realise that amplitudes are just complex numbers. Compute them, then sum and square

$$
B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|
$$

$$
\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B)
$$

There is also a dependence on a scale choice which I will suppress for now

$$
\mathscr{M}(ab \to X; \mu_F^2, \mu_R^2)
$$

❖**Amplitudes = Complex numbers**

❖With a chosen basis all components of an amplitude can be expressed explicitly

❖Matrix multiplication is costly! Effort still grows linearly with the number of diagrams

 $\bar{u}(p_1, h_1)\Gamma(p_1, \ldots, p_{n-1},$

$$
B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|^2
$$

$$
\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B)
$$

$$
h_1, \ldots, h_{n-1})u(p_n, h_n)
$$

Calculate once and reuse again.

$$
B = \sum_{\text{color}} |A|^2 \sum_{\text{spin}} |\mathcal{M}|^2
$$

$$
\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B)
$$

Can we improve this?

We know that the complexity of amplitudes grows factorial with the number of external legs

Recurrence Relations

❖Use recurrence relations to reduce the overhead

Britto, Cachazo, Feng NPB715(2005)499

$B = \sum_{A} (A \mathcal{M}) \cdot (A \mathcal{M})^{\dagger}$ color,spin

$$
\langle O \rangle^{LO} = \int d\Phi_B B(\Phi_B) O(\Phi_B)
$$

Helicity and Color Sums

- ❖ **Helicity:** Not all helicity configurations contribute equally.
- ❖**Solution:** Only generate amplitudes for one helicity configuration and include helicity as a dof in the Phasespace integral
- ❖**Color:** Not all color configurations contribute equally.
- ❖**Solution:** Only generate amplitudes for one helicity configuration and include color as a dof in the Phasespace integral

Recurrence Relations **Duhr, Höche, Maltoni JHEP08(2006)062**

Table 3: Computation time (s) of the $2 \rightarrow n$ gluon amplitudes for 10^4 phase space points, sampled over helicity and color. Results are given for the color-ordered (CO) and the color-dressed (CD) Berends-Giele (BG), Britto-Cachazo-Feng (BCF) and Cachazo-Svrček-Witten (CSW) relations. Numbers were generated on a 2.66 GHz XeonTM CPU.

NLO Matrix Elements

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R R(\Phi_R) O(\Phi_R)
$$

❖At **NLO** we also have to include real and virtual emissions

❖ virtual corrections *V*(Φ*B*)

 $\mathcal{R}(\Phi_R)$ real corrections

❖ Individually, both V and R have IR divergences but there sum is IR finite **KLN Theorem,** however they both live in separate phase spaces

NLO Matrix Elements

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R R(\Phi_R) O(\Phi_R)
$$

IR Divergences

Arise in V from integrations over loop momenta

Arise in R from integrations over soft-collinear momenta

For an IR safe observable they must be removed

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

NLO Matrix Elements: Adding Zero

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) \right] O(\Phi_R)
$$

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right]
$$

NLO Matrix Elements: Adding Zero

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) - S(\Phi_R) \right] O(\Phi_R)
$$

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) \right]
$$

We subtract a term from R, removing IR divergences. Now we have to add it back

NLO Matrix Elements: Adding Zero

❖ We subtract a term from R, removing IR divergences. Now we have to add it back

❖ Add an integrated subtraction term to the Born phasespace

$$
\langle O \rangle^{NLO} = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) + I(\Phi_B) \right] O(\Phi_B) + \int d\Phi_R \left[R(\Phi_R) - S(\Phi_R) \right] O(\Phi_R)
$$

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit

Real and Virtual Corrections

❖ Reduce 1-loop integral into master integrals

Real

Virtual

❖These are tree-level diagrams, use the same methods as born

- $M^{loop} = D \times (Box) + C \times (Triangle) + B \times (Bubble) + A \times (Tadpole) + R$
	-
	- One-Loop corrections are automated these days with

❖D,C,B,A,R are coefficients that can be calculated with either tensor reduction or unitarity cuts

tools like …

How do we calculate observables?

 $\langle O \rangle = \int d\Phi_n \int dx_1 \int dx_2 f$

Step 1:

Calculate the matrix element for your process of choice.

Step 2:

Preform the multidimensional integral Next Section. Now

 $\mathcal{L}_i^2(x_1, \mu_F^2)$ $\left| \mathcal{M}\left(ab \to X; \mu_F^2, \mu_R^2\right) \right|$ 2 *f* $f_j(x_2, \mu_F^2) O(\Phi)$

Integration

https://xkcd.com/2117/

Integration Tricks

There are some tricks to doing integrals. One is to look them up in a table of integrals. Another is to learn Mathematica

Leonard Susskind

Hit or Miss: Calculating *π*

$$
f(x) = \sqrt{1 - x^2} \, x \in (0,1)
$$

 \triangle Randomly choose $x, y \in [0,1]$ ⊗ $[0,1]$ \ast If $y > f(x)$ reject point

$$
\pi = 4 \int_0^1 f(x) dx \approx 4 \left(\frac{\text{Accepted}}{\text{Total}} \right)
$$

Hit or Miss: Limitations

❖ Not very efficient for narrow resonances

❖ ~100k points to get below 1% error

❖ In reality we will have multiple such structures

$$
f(x) = \frac{M_Z \Gamma_Z}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}
$$

Weights, Averages, and Variance

 $\bullet\bullet$ We can relate the average of $f(x)$ to its integral as:

 $\langle f(x) \rangle =$ 1

$$
\frac{1}{b-a}\int_{a}^{b}f(x)\,d(x)
$$

❖We can also estimate the average by choosing random points

 $\langle p(x) \rangle_E =$

 \bullet Notation: We will call $p(x_i)$ ith weight w_i of the event x_i .

Weights, Averages, and Variance

 $\langle P(x) \rangle_E$, we can also define its variance $\langle P(x) \rangle_E$, we can also define its variance

$$
\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)
$$

 \bullet So if $p(x)$ has a large variance it will require many samples, as we have seen

Weights, Averages, and Variance

❖So how do we reduce this variance?

$$
\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)
$$

❖We know that a constant function has zero variance. How can we exploit this?

Weights, Averages, and Variance

❖So how do we reduce this variance?

$$
\sigma^{2} = \frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} w_{i} \right)^{2} \right)
$$

❖We know that a constant function has zero variance. How can we exploit this?

We need to find a function

$$
g(x)
$$
 such that $\frac{f(x)}{g(x)} \approx$ constant

g(*x*)

 $\int dx f(x) = \int dx g(x) \frac{f(x)}{g(x)}$ *g*(*x*)

Could have non trivial shape e.g Narrow resonances, making it difficult to sample efficiently

With a clever choice of $g(x)$ this can be "flattened"

Cost: We no longer sample uniformly

Importance Sampling: Choosing $g(x)$

First we need to ensure $f(x) \leq g(x)$ (at least in the range of interest)

∫ *y xmin* $dx g(x) = \#$

-
-
-

❖It must also be relatively simple to integrate as will need to sample from it

 \bullet How do you get a random number from $g(x)$?

Sampling by Inversion

y = *P*−¹ $(P(x_{min}) + #(P(x_{max}) - P(x_{min}))$ ∫ *xmin* $dx g(x) = \#$ ∫ *xmax xmin dx g*(*x*)

 $P(x) = \int dx p(x)$

y

Sampling by Inversion: Simple Example

 $p(x) =$ 1 *x* , $x \in [a, b]$ $P(x) = \ln(x)$ $y = exp (ln (a) + #(ln(b) – ln(a)))$ $y = a$ *b a*) #

Always good to check the limits of the ran space

 $\# \rightarrow 0$, $y = a$ $\# \rightarrow 1$, $y = b$

Importance Sampling

 $\bullet\bullet$ We can integrate $f(x)$ analytically but it is useful to consider using importance sampling

 \bullet "Perfect Choice" $g(x) = f(x)$

$$
f(x) = \frac{M_Z \Gamma_Z}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}
$$

$$
x = M_Z^2 + \tan\left(z_{\text{min}} + \#(z_{\text{min}} - z_{\text{min}})\right)
$$

$$
y = \#_2\left(\frac{1}{M_Z G_Z}\right)
$$

$$
z_{\text{min/max}} = \tan^{-1}\left(\frac{s_{\text{min/max}} - M_Z^2}{M_Z G_Z}\right)
$$

Why is the sampling not perfect?

Importance Sampling

 $\bullet\bullet$ We can integrate $f(x)$ analytically but it is useful to consider using importance sampling

 \bullet "Perfect Choice" $g(x) = f(x)$

40

$$
f(x) = \frac{M_Z \Gamma_Z}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2}
$$

$$
x = M_Z^2 + \tan\left(z_{\text{min}} + \#(z_{\text{min}} - z_{\text{min}})\right)
$$

$$
y = \#_2\left(\frac{1}{M_Z G_Z}\right)
$$

$$
z_{\text{min/max}} = \tan^{-1}\left(\frac{s_{\text{min/max}} - M_Z^2}{M_Z G_Z}\right)
$$

We did not update $y(x) = f(x)$

Importance Sampling

We have seen how we can use importance sampling for a trivial integral. What about real world examples?

What if you have more than one propagator present?

Multi-Channel

Instead of having one simple estimate $g(x)$, we can use multiple separate channels. Assuming we know how to sample from each individual $g_i(x)$

$$
g(x) = \sum_{i=1}^{N} \alpha_i g_i(x),
$$

$$
\sum_{i=1}^{N} \alpha_i = 1
$$

$$
I \approx E_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{\sum_{j=1}^{N} \alpha_j g_j(x)}
$$

A channel is chosen at random according to α_i and the sampling proceeds as before. Initially, all channels have equal probability of being picked. They are then updated based an the weight distribution of the channel **Comput. Phys. Commun. 83 (1994), 141-146**

Multi-Channel

Instead of having one simple estimate $g(x)$, we can use multiple separate channels. Assuming we know how to sample from each individual $g_i(x)$

Example: $q\bar{q} \rightarrow e^+e^-$

 $g(x) = \alpha_1 g_\gamma(x) + \alpha_2 g_Z(x) + \alpha_3 g_{ISR}(x)$

❖ The Vegas algorithm is adaptive sampling algorithm developed by G.P Lepage

-
-
- regions which narrow peaks get more thin bins and regions which are flat get wider ones
	-

❖ Vegas can be used approximate the target directly, or it can be used to remap the input variables e.g uniform random numbers

Vegas Algorithm

 \mathbf{r}

STERN DE DE LA COMPANYA DE LA COMPA
L'ESCOLO DE LA COMPANYA DE LA COMPA

Visual interpretation

