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Goal

❖ Define observables that can be measured experimentally 

❖ Cross section for  which is defined in terms of identified particles, acceptance 

cuts, isolation criteria, etc.  

❖ Differential distributions  

❖ Evaluate these observables in the SM and/or your favourite BSM 

❖ Compare to data

pp → X

pT, η, mx . . . .
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Try to falsify theoretical models by comparison with data:



Goal
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We need to calculate the probability of events like this



Goal

❖Drell-Yan:   

❖Four-Leptons:   

❖  Production:  

❖  Production: 

pp → ℓℓ̄ + 𝒪(100)

pp → 4ℓ + 𝒪(150)

tt̄ pp → tt̄ + 𝒪(700)

tt̄h pp → tt̄h + 𝒪(1200)
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We need to calculate the probability of events like this

Any event at the LHC will contain large number of 
particles in the final state that must be modelled



Monte Carlo Event Generators
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HERWIG
Traditional focus on showers, Qtilde and Dipoles shower, 
cluster hadronization model, NLO matching and merging.

PYTHIA
Sophisticated soft physics, pt-ordered, DIRE and Vincia 
shower, string hadronization, NLO merging.

SHERPA
Focus on perturbative improvements, CS and DIRE 
shower, cluster or string hadronization, NLO matching and 
merging. 



❖ Hard Interaction 

❖ Radiative Corrections 

❖ Hadronization 

❖ Hadron Decays 

❖ Underlying Event

Divide and Conquer



❖ Hard Interaction 

❖ Radiative Corrections 

❖ Hadronization 
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How do we calculate observables?
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⟨O⟩ = ∫ dΦn ∫ dx1 ∫ dx2 fi(x1, μ2
F) ℳ (ab → X; μ2

F, μ2
R)

2
fj(x2, μ2

F) O(Φ)

Step 1:  

Calculate the matrix element for your process of choice.

Step 2:  

Preform the multidimensional integral 

Next Section



Hard Scattering: Matrix Elements

❖ For low multiplicities we can do it by hand 

❖ Automated Tools Matrix Element Generators 

❖ CalcHEP 

❖ Comix/AMEGIC 

❖ HELAC 

❖Whizard 

❖…  

❖ FeynRules for BSM 
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How do we calculate ℳ (ab → X; μ2
F, μ2

R)
2



Hard Scattering: Matrix Elements

❖Textbook: Draw the Feynman 

diagrams, apply the rules, sum over 

the external states, find a mistake 

and start again.   

❖ Reality: Realise that amplitudes are 

just complex numbers. Compute 

them, then sum and square 
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 B = ∑
color

|A |2
∑
spin

|ℳ |2

 ⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB)

There is also a dependence 
on a scale choice which I 
will suppress for now

How do we calculate ℳ (ab → X; μ2
F, μ2

R)
2



Leading Order Matrix Elements
❖Amplitudes = Complex numbers 

❖With a chosen basis all components of an 
amplitude can be expressed explicitly 

❖Matrix multiplication is costly! Effort still grows 
linearly with the number of diagrams 
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 B = ∑
color

|A |2
∑
spin

|ℳ |2

 ⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB)

ū(p1, h1)Γ(p1, …, pn−1, h1, …, hn−1)u(pn, hn)



Leading Order Matrix Elements

❖ Repeated Subgraphs: Many diagrams will share 
the same subgraph
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 B = ∑
color

|A |2
∑
spin

|ℳ |2

 ⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB)

Can we improve this?

❖ Calculate once and reuse again.



Leading Order Matrix Elements
 B = ∑

color
|A |2

∑
spin

|ℳ |2

 ⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB)

Recurrence Relations

❖ We know that the complexity of amplitudes 
grows factorial with the number of external legs
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❖Use recurrence relations to reduce the overhead

Berends, Giele NPB306(1988)759 

Cachazo, Svrcek, Witten JHEP09(2004)006 

Britto, Cachazo, Feng NPB715(2005)499 



Leading Order Matrix Elements
 B = ∑

color,spin
(Aℳ) ⋅ (Aℳ)†

 ⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB)

Helicity and Color Sums

❖ Helicity: Not all helicity configurations contribute 
equally. 

❖Solution: Only generate amplitudes for one helicity 
configuration and include helicity as a dof in the Phase-
space integral 

❖Color: Not all color configurations contribute equally. 

❖Solution: Only generate amplitudes for one helicity 
configuration and include color as a dof in the Phase-
space integral
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Leading Order Matrix Elements
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Recurrence Relations Duhr, Höche, Maltoni JHEP08(2006)062 



NLO Matrix Elements
 ⟨O⟩NLO = ∫ dΦB [B(ΦB) + V(ΦB)] O(ΦB) + ∫ dΦR R(ΦR) O(ΦR)

❖At NLO we also have to include real and virtual emissions 

❖  virtual corrections 

❖  real corrections 

❖ Individually, both V and R have IR divergences but there sum is IR finite KLN 

Theorem, however they both live in separate phase spaces

V(ΦB)

R(ΦR)
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NLO Matrix Elements
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 ⟨O⟩NLO = ∫ dΦB [B(ΦB) + V(ΦB)] O(ΦB) + ∫ dΦR R(ΦR) O(ΦR)

IR Divergences
Arise in V from integrations over loop momenta

Arise in R from integrations over soft-collinear momenta

For an IR safe observable they must be removed 

Subtraction Method

Create universal subtraction terms that reproduce R in the soft-collinear limit



NLO Matrix Elements: Adding Zero
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 ⟨O⟩NLO = ∫ dΦB [B(ΦB) + V(ΦB) ] O(ΦB) + ∫ dΦR [R(ΦR) ] O(ΦR)

Subtraction Method
Create universal subtraction terms that reproduce R in the soft-collinear limit



NLO Matrix Elements: Adding Zero

❖ We subtract a term from R, removing IR divergences. Now we have to add it back
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 ⟨O⟩NLO = ∫ dΦB [B(ΦB) + V(ΦB) ] O(ΦB) + ∫ dΦR [R(ΦR) − S(ΦR)] O(ΦR)

Subtraction Method
Create universal subtraction terms that reproduce R in the soft-collinear limit



NLO Matrix Elements: Adding Zero

❖ We subtract a term from R, removing IR divergences. Now we have to add it back 

❖ Add an integrated subtraction term to the Born phasespace 

❖ Now both integrals are separately IR finite and can be treated with MC methods
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 ⟨O⟩NLO = ∫ dΦB [B(ΦB) + V(ΦB) + I(ΦB)] O(ΦB) + ∫ dΦR [R(ΦR) − S(ΦR)] O(ΦR)

Subtraction Method
Create universal subtraction terms that reproduce R in the soft-collinear limit



Real and Virtual Corrections

❖ Reduce 1-loop integral into master integrals
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Real

Virtual

❖These are tree-level diagrams, use the same methods as born

ℳloop = D × (Box) + C × (Triangle) + B × (Bubble) + A × (Tadpole) + R

❖D,C,B,A,R are coefficients that can be calculated with either tensor reduction or unitarity cuts

One-Loop corrections are automated these days with 
tools like …



How do we calculate observables?
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⟨O⟩ = ∫ dΦn ∫ dx1 ∫ dx2 fi(x1, μ2
F) ℳ (ab → X; μ2

F, μ2
R)

2
fj(x2, μ2

F) O(Φ)

Step 1:  

Calculate the matrix element for your process of choice.

Step 2:  

Preform the multidimensional integral 

Next Section.  Now



Integration 
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https://xkcd.com/2117/



Integration Tricks
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There are some tricks to doing integrals. 
One is to look them up in a table of 

integrals. Another is to learn Mathematica

Leonard Susskind



Hit or Miss: Calculating π
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f(x) = 1 − x2 x ∈ (0,1)

π = 4∫
1

0
f(x)dx ≈ 4 ( Accepted

Total )

❖ Randomly choose   

❖ If  reject point 

x, y ∈ [0,1] ⊗ [0,1]

y > f(x)



Hit or Miss: Limitations 

❖ Not very efficient for narrow resonances 

❖ ~100k points to get below 1% error  

❖ In reality we will have multiple such 

structures 
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f(x) =
MZΓZ

(s − M2
Z)2 + M2

ZΓ2
Z



Weights, Averages, and Variance 
❖We can relate the average of  to its integral as:f(x)
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⟨ f(x)⟩ =
1

b − a ∫
b

a
f(x) d(x)

❖We can also estimate the average by choosing random points 

⟨p(x)⟩E =
1
N

N

∑
i=1

p(xi)

❖Notation: We will call   ith  weight  of the event .  p(xi) wi xi



Weights, Averages, and Variance 

❖Now that we have an estimate , we can also define its variance⟨p(x)⟩E
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σ2 =
1

N − 1
1
N

N

∑
i=1

w2
i − ( 1

N

N

∑
i=1

wi)
2

❖So if  has a large variance it will require many samples, as we have seenp(x)



Weights, Averages, and Variance 

❖So how do we reduce this variance?
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σ2 =
1

N − 1
1
N

N

∑
i=1

w2
i − ( 1

N

N

∑
i=1

wi)
2

❖We know that a constant function has zero variance. How can we exploit this?



Weights, Averages, and Variance 

❖So how do we reduce this variance?
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σ2 =
1

N − 1
1
N

N

∑
i=1

w2
i − ( 1

N

N

∑
i=1

wi)
2

❖We know that a constant function has zero variance. How can we exploit this?

We need to find a function  such that constant g(x)
f(x)
g(x)

≈



Importance Sampling

❖ The problem with hit or miss is that we sample the phasespace uniformly. A more efficient 
way would be sample from a distribution that is similar to our integrand

32

∫ dx f(x) = ∫ dx g(x)
f(x)
g(x)



Importance Sampling

❖ The problem with hit or miss is that we sample the phasespace uniformly. A more efficient 
way would be sample from a distribution that is similar to our integrand

33

∫ dx f(x) = ∫ dx g(x)
f(x)
g(x)

Could have non trivial shape e.g Narrow resonances, 

making it difficult to sample efficiently   



Importance Sampling

❖ The problem with hit or miss is that we sample the phasespace uniformly. A more efficient 
way would be sample from a distribution that is similar to our integrand

34

∫ dx f(x) = ∫ dx g(x)
f(x)
g(x)

With a clever choice of  this can be 
“flattened” 

g(x)



Importance Sampling

❖ The problem with hit or miss is that we sample the phasespace uniformly. A more efficient 
way would be sample from a distribution that is similar to our integrand
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∫ dx f(x) = ∫ dx g(x)
f(x)
g(x)

Cost: We no longer sample uniformly 



Importance Sampling: Choosing g(x)

❖First we need to ensure  (at least in the range of interest) 

❖It must also be relatively simple to integrate as will need to sample from it 

❖How do you get a random number from ?

f(x) ≤ g(x)

g(x)
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∫
y

xmin

dx g(x) = #∫
xmax

xmin

dx g(x)



Sampling by Inversion
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y = P−1 (P(xmin) + #(P(xmax) − P(xmin)))

∫
y

xmin

dx g(x) = #∫
xmax

xmin

dx g(x)

P(x) = ∫ dx p(x)



Sampling by Inversion: Simple Example
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p(x) =
1
x

, x ∈ [a, b] P(x) = ln(x)

y = exp (ln (a) + #(ln(b) − ln(a)))
y = a ( b

a )
#

Always good to check the limits of the  
ran space

# → 0, y = a # → 1, y = b



Importance Sampling
❖ We can integrate  analytically but it is 

useful to consider using importance sampling 

❖ “Perfect Choice” 

f(x)

g(x) = f(x)

39

f(x) =
MZΓZ

(s − M2
Z)2 + M2

ZΓ2
Z

x = M2
Z + tan (zmin + #(zmin − zmin))

zmin/max = tan−1
smin/max − M2

Z

MZGZ
y = #2( 1

MZGZ )

Why is the sampling not perfect?



Importance Sampling
❖ We can integrate  analytically but it is 

useful to consider using importance sampling 

❖ “Perfect Choice” 

f(x)

g(x) = f(x)
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f(x) =
MZΓZ

(s − m2
Z)2 + m2

ZΓ2
Z

x = M2
Z + tan (zmin + #(zmin − zmin))

zmin/max = tan−1
smin/max − M2

Z

MZGZ
y = #2( 1

MZGZ )

We did not update y(x) = f(x)



Importance Sampling
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We have seen how we can use importance sampling 
for a trivial integral. What about real world 
examples? 

What if you have more than one propagator present?



Multi-Channel 
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Instead of having one simple estimate , we can use multiple separate channels. 
Assuming we know how to sample from each individual 

g(x)
gi(x)

g(x) =
N

∑
i=1

αigi(x),
N

∑
i=1

αi = 1

A channel is chosen at random according to  and the sampling proceeds as before. 
Initially, all channels have equal probability of being picked. They are then updated 
based an the weight distribution of the channel 

αi

Comput. Phys. Commun. 83 (1994), 141–146

I ≈ EN =
1
N

N

∑
i=1

f(xi)
g(xi)

=
1
N

N

∑
i=1

f(xi)

∑N
j=1 αjgj(x)

https://arxiv.org/pdf/hep-ph/9405257


Multi-Channel 
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Instead of having one simple estimate , we can use multiple separate channels. 
Assuming we know how to sample from each individual 

g(x)
gi(x)

Example: qq̄ → e+e−

g(x) = α1gγ(x) + α2gZ(x) + α3gISR(x)



Vegas Algorithm 

❖ The Vegas algorithm is adaptive sampling algorithm developed by G.P Lepage 

❖The essential idea is to split the integration range into a number of smaller bins, where 

regions which narrow peaks get more thin bins and regions which are flat get wider ones 

❖ Vegas can be used approximate the target directly, or it can be used to remap the input 

variables e.g uniform random numbers 
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G.P. Lepage, J.Comput.Phys.27:192,1978



Vegas Algorithm
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20 40 60 80 100 120 140 160 180p
s

10°6

10°5

10°4

10°3

10°2

10°1

f(
x)

20 40 60 80 100 120 140 160 180p
s

10°6

10°5
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10°2

10°1

f(
x)

Visual interpretation 
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Questions?


