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These lectures will …


• explain main theoretical and experimental results leading to development of 
quantum chromodynamics (QCD) and outline its concepts


• teach you how to calculate scaling violations for parton distribution 
functions (PDFs) 


• give a taste of rich phenomenology of PDFs



Plan of lectures:    
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• Lecture 1: The quark model, deep inelastic scattering (DIS), the parton 
model, main concepts of quantum chromodynamics (QCD)  


• Lecture 2: Scaling violations in QCD, DGLAP evolution equations, 
factorization theorem


• Lecture 3: Phenomenology of proton and photon PDFs

Literature:    

• Lecture 1: Halzen, Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (1984); 
Kronfeld. Quigg, “Resource Letter: Quantum Chromodynamics”, arXiv:1002.5032 [hep-ph]; Gross, Klempt et al. “50 Years 
of Quantum Chromodynamics”, Eur. Phys. J C (2023) 1125


• Lecture 2: Dokshitzer, Diakonov, Troian, “Hard Processes in Quantum Chromodynamics”, Phys. Rept. 58 (1980) 
269; Sterman et al., “Handbook of perturbative QCD”, Rev. Mod. Phys. 67 (1995) 157-248


• Lecture 3: Aschenauer, Thorne, Yoshida, “Structure functions”, Review of Particle Physics, Particle Data Group; 
Nisius, Phys. Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049]. 



Flavor symmetry of strong interaction  
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• 50s–60s: Discovery of many new 
baryons and mesons (hadrons) 


• Interaction is mediated by the strong 
interaction (nuclear force) acting at short 
distances ~ 1 fermi=10-15 m and short 
times ~ 10-23 s

• 1961, Gell-Mann, Ne’eman, The Eightfold 
Way: classification of hadrons using 
approximate flavor SU(3) symmetry → all 
hadrons grouped into multiplets 


• → prediction of  confirmed in 1964

• → Gell-Mann-Okubo mass formula

• → idea of quarks

Ω−

• Various theoretical approaches (Regge poles, current algebra, Yukawa 
interactions) → impossible to construct quantum field theory of strong 
interactions.  PHY-653 EPP

A Brief History of Particle Physics Slide 7 of 13

The Particle Zoo

1960s/70s1960s/70s1960s/70s1960s/70s

Hundreds of 'elementary particles' discovered – ρ, ω, Ř, …, ∆, Ξ,

… a real mess!

All these particles explained by combinations of more 

fundamental 'quarks', u, d, s and their anti-quarks. 



The quark model  
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• 1964, Gell-Mann and Zweig: hadrons are made up of 3 quarks forming the 
fundamental representation of flavor SU(3) →  and .


• Quarks have fractional electric charges (2/3,-1/3,-1/3), baryon number B=1/3, 
spin 1/2, isospin Iz=(1/2,-1/2,0), and strangeness S=(0,0,-1).


• Mesons are  bound states:  → flavor octets and singlets with 
allowed quantum numbers  


• Baryons are  states: 


• Spin content of baryon multiples:  → S=3/2, 1/2

q(u, d, s) = 3 q̄(ū, d̄, s̄) = 3̄

qq̄ 3 ⊗ 3̄ = 8 ⊕ 1
JPC = (0−+,1−−, …)

qqq 3 ⊗ 3 ⊗ 3 = 10S ⊕ 8MS
⊕ 8MA

⊕ 1A

2 ⊗ 2 ⊗ 2 = 4S ⊕ 2MS
⊕ 2MA

3

-3

-2

-1

• Reasonable description of baryon static properties, e.g., the ratio of neutron  
and proton magnetic moments:  vs. μn /μp = − 2/3 μn /μp(exp.) = − 0.68497945(58)



Quarks and color  
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• Initially quarks treated as fictional due to non-observation of free particles 
with a fractional charge. 


• Second challenge: problem with Fermi statistics since decuplet ground-state 
wave function appears to be symmetric in space × flavor × spin:  or 

.


• 1964/65, Greenberg; Han, Nambu; Fritzsch, Gell-Mann: quarks carry an 
additive quantum number color → need at least Nc=3 colors (red, green, blue) 
for the baryon wave function to be antisymmetric: 

Δ++ = uuu
Ω− = sss

Ψ(q1, q2, q2) = Ψspace(x1, x2, x3)Ψflavor( f1, f2, f3)Ψspin(s1, s2, s3)Ψcolor(c1, c2, c3)

Ψcolor(c1, c2, c3) =
1

6
(RGB − GRB + GBR − RGB + BRG − BGR)

• Experimental evidence of color-triplet quark model:


 decay:  


                        vs. 

π0 → γγ Γ =
α2

2π
N2

c

33

m3
π

f 2
π

= 7.75 eV

Γ(exp.) = (7.86 ± 0.54) eV



e+e- annihilation and R-factor 
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• R-factor for  annihilation to hadrons: e+e− R =
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)
= Nc ∑

q

Q2
q

T. Aoyama, N. Asmussen, M. Benayoun et al. Physics Reports 887 (2020) 1–166

Fig. 12. The total hadronic e+e� annihilation cross section ratio R as a function of
p
s [2]. Inclusive measurements from BES [37,41,59] (and references

therein) and KEDR [75,86,167] are shown as data points, while the sum of exclusive channels from this analysis is given by the narrow blue bands.
Also shown is the prediction from massless pQCD (solid red line).
Source: Reprinted from Ref. [6].

However, the situation is far from ideal as the two most precise measurements by KLOE and BABAR do not agree
well within their quoted uncertainties. After the combination [82] of the three KLOE measurements based on different
ISR methods, the reduced uncertainty makes the situation worse. Fig. 13 taken from Ref. [82] shows the ratios of the
recent measurements by CMD-2, SND, BABAR, and BESIII to the combined KLOE cross section in the 0.6–0.9GeV mass
region, where the KLOE band and the data points include the full diagonal error. Several features are apparent: (1) the
normalization at the peak is generally higher than KLOE, (2) there is a trend for a linear increase of the ratio with mass,
and (3) a clear disagreement is seen in the narrow ⇢–! interference region. Due to the higher precision of the BABAR
data, these features are most clearly visible there, but they are also present for the other experiments. While there is
reasonable agreement below 0.70–0.75GeV, the KLOE data appears noticeably lower on the ⇢ peak and above by a factor
rising to a few percent.

The ratios in the ⇢–! interference region display a common oscillatory pattern. Since in Ref. [82] the ratio of a given
experiment is computed with respect to the linearly interpolated value between adjacent KLOE points, one could expect
some bias, especially in the interference region with its fast-varying cross section. Indeed, such oscillation is not present
for the ratio KLOE to BABAR [64], where a fit to the BABAR data is used as reference in order to avoid such effects. As seen
in Fig. 14, the interference pattern is more washed out in KLOE, most probably due to the choice of wide mass bins. A
vertical offset is clearly seen in the plot on the ⇢ peak. It should be noted that the effect of the ⇢–! interference pattern
is largely canceled when integrating over the mass spectrum. Thus differences in this region between the experiments
are not expected to produce large biases for the integral values.

The most significant discrepancy between the KLOE and BABAR data points to one or several systematic effects not
properly covered by the estimated systematic uncertainties. Here one might hope to appeal to other experiments to
resolve this discrepancy. Unfortunately, their results are insufficiently precise at present, lying between those of KLOE
and BABAR, and overlapping reasonably with both. This can been seen in Fig. 15 which shows the contributions to the
dispersion integral from the region between 0.6 and 0.9 GeV for each of the experimental data sets. One-parameter
fits yield �2/dof values of 4.5/4 and 3.6/4 for fits including all experiments but BABAR and all experiments but KLOE,
respectively. Thus CMD-2/SND/BESIII/CLEO are compatible with either KLOE or BABAR.

In the combination procedures used by DHMZ (see Section 2.3.1) and KNT (see Section 2.3.2), local tensions are dealt
with by introducing scaling factors for the uncertainties. Global tension is also accounted for in the DHMZ analysis.

Some tension also occurs in the combination of the results from the three KLOE measurements [82]. The ratios of the
cross section values between KLOE-2012 and KLOE-2008, as well as KLOE-2010 and KLOE-2008, were computed taking
into account all the correlations between the measurements, for both the statistical and systematic uncertainties. They
show some systematic deviations from unity (Fig. 16) that are statistically significant and not fully taken into account
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QCD in e
+
e
� Annihilation

e
+
e
� annihilation at high energies provides direct experimental evidence for

colour and for gluons.

Start by comparing the cross-sections for e+e� ! µ+µ� and e
+
e
� ! qq̄

�

e�

e+

µ+

µ�

Qe Qe

M ⇠ 1

q2

p
↵
p
↵

) �(e+e� ! µ+µ�) =
4⇡↵2

3s

�

e�

e+

q̄

q

Qe Qqe

M ⇠ 1

q2
Qq

p
↵
p
↵

If we neglect the mass of the final state quarks/muons then the only di↵erence
is the charge of the final state particles:

Qµ = �1 Qq = +
2

3
, � 1

3
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•  invariant center-of mass 
energy squared


• 


• 


• 

s = (pe+ + pe−)2

s > ms → R = 3 ( 4
9

+
1
9

+
1
9 ) = 2

s > mc → R = 3 ( 4
9

+
1
9

+
1
9

+
4
9 ) = 3

1
3

s > mb → R = 3 ( 4
9

+
1
9

+
1
9

+
4
9

+
1
9 ) = 3

2
3

• → discovery of charm quark in 1974 
and bottomonia in 1978 (bottom quark 
discovered in pA at Fermilab in 1977).

Nc(eu
2+ed

2+es
2)=2 

Nc(eu
2+ed

2+es
2+ec

2)=2+4/3 

Nc(eu
2+ed

2+es
2+ec

2+eb
2) 

=2+5/3 



Deep inelastic scattering and Bjorken scaling
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• Proton has internal structure: magnetic moment  
(Stern, Nobel Prize 1943) and elastic form factors (Hofstadter, Nobel Prize 1961).


• 1968/69, SLAC-MIT experiments on deeply inelastic electron-nucleon 
scattering: 

μp /μN = 2.79284734463(82) ≠ 2

e, k

p

e′, k′

X

γ∗, q = k − k′

• For large scattering angles  (large ) →  is much larger than given by 
elastic form factors and scales, i.e., depends only on  and not on .


• 1968, Bjorken: Theoretical prediction of the scaling using current algebra.   

θ Q2 σ/σMott
x (x, Q2)

• Photon virtuality  


• Photon energy 


• Invariant energy 


• Bjorken variable 


• Bjorken limit:  are large and  is fixed.

Q2 = − q2 = 4EE′￼sin2 θ
2

ν = E − E′￼

W2 = (q + p)2 ≈ 2νmp

x =
Q2

2(p ⋅ q)
=

Q2

2mp(E − E′￼)
Q2, W x

Prof. M.A. Thomson Michaelmas 2011 176

Particle Physics
Michaelmas Term 2011

Prof Mark Thomson

e– p

Handout 6 : Deep Inelastic Scattering

Prof. M.A. Thomson Michaelmas 2011 177

e– p Elastic Scattering at Very High q2

!At high q2 the Rosenbluth expression for elastic scattering becomes 

•From e– p elastic scattering, the proton magnetic form factor is

at high q2

•Due to the finite proton size, elastic scattering
at high q2 is unlikely and inelastic reactions
where the proton  breaks up dominate. 

p

e–

e–

X

!

q

M
.Breidenbach et al., 

Phys. Rev. Lett. 23 (1969) 935

1/Q6



The parton model
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• 1969, Feynman: Bjorken scaling of inelastic scattering off proton can be 
interpreted as elastic scattering off point-like constituents of the proton, 
partons.

9.2 Partons and Bjorken Scaling 191

9.2 Partons and Bjorken Scaling

Now that scaling is an approximate experimental fact, we attempt to make the
identification of (9.2) explicit:

xE,xp

(9.7)

Equation (9.7) recognizes the fact that various types of "point" partons make up
the proton (i = u, d, ... ,quarks, with various charges e j , as well as gluons; the
latter do not interact with the photon, of course). They can each carry a different
fraction x of the parent proton's momentum and energy. We introduce the parton
momentum distribution

dP
/;(x) = d; = P

........

(9.8)

which describes the probability that the struck parton i carries a fraction x of the
proton's momentum p. All the fractions x have to add up to 1; therefore,

L f dx x/Ax) = 1.
j'

(9.9)

Here, if sums over all the partons, not just the charged ones i which interact with
the photon. The kinematics can be summarized as follows:

Proton Parton
! !

Energy E xE (9.10)
Momentum PL XPL

PT= 0 PT= 0
Mass M m = (x 2E2 - x 2ifJ'/2 = xM,

• In frame, where the proton has very high energy (infinite momentum frame), 
proton = collection of collinear massless partons carrying momentum fraction  
of the parent proton.

x

• Parton distribution function (PDF)  is 
the probability to find parton  that carries 
a momentum fraction .

fi(x)
i

x

9.2 Partons and Bjorken Scaling 191
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Now that scaling is an approximate experimental fact, we attempt to make the
identification of (9.2) explicit:

xE,xp

(9.7)

Equation (9.7) recognizes the fact that various types of "point" partons make up
the proton (i = u, d, ... ,quarks, with various charges e j , as well as gluons; the
latter do not interact with the photon, of course). They can each carry a different
fraction x of the parent proton's momentum and energy. We introduce the parton
momentum distribution

dP
/;(x) = d; = P

........

(9.8)

which describes the probability that the struck parton i carries a fraction x of the
proton's momentum p. All the fractions x have to add up to 1; therefore,

L f dx x/Ax) = 1.
j'

(9.9)

Here, if sums over all the partons, not just the charged ones i which interact with
the photon. The kinematics can be summarized as follows:

Proton Parton
! !

Energy E xE (9.10)
Momentum PL XPL

PT= 0 PT= 0
Mass M m = (x 2E2 - x 2ifJ'/2 = xM,

• Momentum sum rule: ∑
i

∫
1

0
dxxfi(x) = 1



DIS and structure functions (1/3)
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• Electron-proton deep inelastic scattering (DIS)

• Scattering amplitude for this graph: ℳ =
e2

q2
ū(k′￼)γμu(k)⟨X |Jμ(0) |p⟩

• DIS cross section: dσ =
|ℳ |2

4 (k ⋅ p)2
dLips

• Lorentz invariant phase space: 

dLips = (2π)4δ4(k + p − k′￼− pX)
d3 ⃗k′￼

2Ek′￼(2π)3 ∑
X

d3 ⃗pX

2EpX
(2π)3

e, k

p

e′, k′

X

γ∗, q = k − k′

• Photon virtuality  


• Bjorken variable 


• Momentum fraction carried by photon 

Q2 = − q2 = − (k − k′￼)2

x =
Q2

2(p ⋅ q)
y =

(p ⋅ q)
(p ⋅ k)

• Squaring the amplitude: dσ =
16π3α2mp

q4(k ⋅ p)
LμνWμν

d3 ⃗k′￼

2Ek′￼(2π)3



DIS and structure functions (2/3)
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• Leptonic tensor: 
Lμν =

1
2 ∑

pol

ū(k)γνu(k′￼)ū(k′￼)γμu(k) =
1
2

Tr( ̂k′￼γμ ̂kγν) = 2 (k′￼μkν + k′￼νkμ − gμν(k′￼⋅ k))

• Hadronic tensor: 

4πmpWμν =
1
2 ∑

pol
∑

X

(2π)4δ4(k + p − k′￼− pX)⟨p |Jν(0) |X⟩⟨X |Jμ(0) |p⟩
d3 ⃗pX

2EpX
(2π)3

• Structure functions  and  parametrize composite structure of proton:W1 W2

Wμν = − W1 (gμν −
qμqν

q2 ) +
W2

m2
p (pμ −

(p ⋅ q)
q2

qμ) (pν −
(p ⋅ q)

q2
qν)

• In one-photon approximation for unpolarized DIS, 2 independent Lorentz 
structures respecting current conservation .qμWμν = 0

• More common notation using structure functions  and : F1 = mpW1 F2 = νW2

Wμν = −
F1

mp (gμν −
qμqν

q2 ) +
F2

νm2
p (pμ −

(p ⋅ q)
q2

qμ) (pν −
(p ⋅ q)

q2
qν)

• →  and F1 = (−
1
2

gμν +
2x2

Q2
pμpν) mpWμν

F2

x
= (−gμν +

12x2

Q2
pμpν) mpWμν



DIS and structure functions (3/3)
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• After some algebra: LμνWμν =
2Q2

mp
F1 +

2Q2

mp
F2

1
xy2 (1 − y − x2y2

m2
p

Q2 )
• Phase space of scattered electron:  using  

 transformation with Jakobian: 

d3 ⃗k′￼

2Ek′￼(2π)3
=

1
2(2π)2

mpE
Q2

y2dxdQ2

(x, Q2) → (E′￼, cos θ) dxdQ2 =
Q2

mp

1 − y
y2

dE′￼d cos θ

• Reduced cross section:  , where dσr =
xQ4

2πα2Y+

dσ
dxdQ2

= F2 −
y2

Y +
FL

Y+ = 1 + (1 − y)2

• Putting all factors together: 
dσ

dxdQ2
=

4πα2

Q4

1
x

xy2F1 + F2 (1 − y −
x2y2m2

p

Q2 )

• Longitudinal structure function  proportional to the cross section 
of longitudinally polarized photons.

FL = F2 − 2xF1



DIS in quark parton model (1/2)
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• In the parton model, DIS cross section is convolution of the cross section for 

scattering off a parton with its momentum distribution  dσ = ∑
q

∫
1

0
dξ ̂σq

0(ξp)fq(ξ)

• At the level of hadronic tensors: Wμν = ∑
q

∫
1

0

dξ
ξ

Ŵq
μν fq(ξ)

• Sum over polarizations: 4πmpŴq
μν =

e2
q

2
(2π)4δ4(p + q − p′￼)

d3p′￼

2Ep′￼(2π)3
Tr( ̂p′￼γμ ̂pγν)

• Direct calculation of hadronic tensor for partons = spin-1/2 
fermions of charge : eq

4πmpŴq
μν =

e2
q

2 ∑
pol

(2π)4δ4(p + q − p′￼)
d3p′￼

2Ep′￼(2π)3
ū(p)γνu(p′￼)ū(p′￼)γμu(p)

• Trick to handle phase space integrals: d3p′￼

2Ep′￼
= δ(p′￼2)Θ(Ep′￼)d4p′￼

p

p
′

γ
∗
, q

• → 4πmpŴq
μν =

e2
q

2
(2π)δ((p + q)2)Θ(Ep′￼)Tr( ̂p′￼γμ ̂pγν)

Now  refer to 
quark momenta

p, p′￼



DIS in quark parton model (2/2)
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• Since  → (p + q)2 = 2(p ⋅ q) − Q2 = (Q2/x)(ξ − x) mpŴq
μν =

e2
q

4
x

Q2
δ(ξ − x)Tr( ̂p′￼γμ ̂pγν)

• Projecting out Lorentz structures:  and .−gμνmpŴq
μν = e2

q xδ(ξ − x) pμpνŴq
μν = 0

• The Callan-Gross relation  is a consequence of spin 1/2 of 
partons → the longitudinal structure function  → not true in full QCD.

F2(x) = 2xF1(x)
FL = 0

• Recalling similar projection for the proton hadronic tensor and the 
connection between  and  →  and Wμν Ŵq

μν F1(x) =
1
2 ∑

q

e2
q fq(x) F2(x) = ∑

q

e2
q xfq(x)

• DIS cross section in quark parton model: 
dσ

dxdQ2
=

d ̂σ0

dxdQ2 ∑
q

e2
q fq(x)

• Partonic Born cross section: d ̂σ0

dxdQ2
=

4πα2

Q4 ( y2

2
+ (1 − y −

x2y2m2
p

Q2 ))

• The parton model explains the Bjorken scaling of  since the structure 
functions  and PDFs  depend only on one variable  → not true in full 
QCD, see Lecture 2. 

dσ/d ̂σ
F1,2(x) fq(x) x



Quark PDFs of the proton (1/3)
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• It is natural to identify partons with quarks.                                                  
*Note that massless current quarks ≠ massive quarks of the naive quark model. 


• The proton structure function: 

 


• The neutron structure function using isospin symmetry: 

Fep
2 (x)
x

= ( 2
3 )

2

(u(x) + ū(x)) + ( 1
3 )

2

(d(x) + d̄(x)) + ( 1
3 )

2

(s(x) + s̄(x))

Fen
2 (x)
x

= ( 2
3 )

2

(d(x) + d̄(x)) + ( 1
3 )

2

(u(x) + ū(x)) + ( 1
3 )

2

(s(x) + s̄(x))

2

3.1 Parton Spin 

Callan-Gross relation 

for spin ½ partons
12

2

1 =
F
xF

e.g.: for spin 0 partons, sin2θ/2 term in 
cross section disappears:    F1(x)=0

Proton constituents are spin ½ partons

3.2 Sea and valence quarks 

Parton distribution function fi(x)  = Probability to find parton with xi∈[x, x+dx]

Partons = Quarks and Gluons

u
u

d
q
q

valence quarks

sea quarks

Quark composition of the proton

)()()( ssssssvvv ssdduuduu ++++++++

Sea: Heavy quark contribution strongly suppressed
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x
xF
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i
i

i

ep

+++++=

⋅= ∑

u(x), d(x) (anti) quark 
densities of u and d

• It is customary to split quark distributions into 
the valence and sea parts:  
and .

u(x) = uval(x) + us(x)
ū(x) = us(x)

Valence quarks carry proton quantum 
numbers, sea quarks are radiated in pairs.

• Sum rules for valence quarks: 

, 

∫
1

0
dx[u(x) − ū(x)] = ∫

1

0
dxuval(x) = 2

∫
1

0
dx[d(x) − d̄(x)] = ∫

1

0
dxdval(x) = 1 ∫

1

0
dx[s(x) − s̄(x)] = 0



Quark PDFs of the proton (2/3)
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• Ratio of proton and neutron structure functions:  
1
4

≤
Fen

2 (x)
Fep

2 (x)
≤ 4

• At small , see quarks dominate:  


• At large , :  


• Many more inequalities and approximate 
sum rules for electron-nucleon and neutrino-
nucleon scattering. Some examples:

x
Fen

2 (x)
Fep

2 (x)
→ 1

x uv(x) ≫ dv(x) ≫ qs(x)
Fen

2 (x)
Fep

2 (x)
→

1
4

• Gottfried sum rule:  


• Adler sum rule: 


• Gross-Llewellyn-Smith sum rule: 

∫
1

0

dx
x

(Fep
2 (x) − Fen

2 (x)) =
1
3

∫
1

0

dx
x

(Fνn
2 (x) − Fνp

2 (x)) = 2

∫
1

0

dx
x

(Fνp
3 (x) + Fνn

3 (x)) = 3

Valence and Sea Quarks 

Prof. M.A. Thomson Michaelmas 2011 196

•As we are beginning to see the proton is complex…
•The parton distribution function

includes contributions from the “valence”
quarks and the virtual quarks produced by
gluons:  the “sea”

•Resolving into valence and sea contributions:

•The proton contains two valence up quarks and one valence down quark
and would expect:

•But no a priori expectation for the total number of sea quarks ! 
•But sea quarks arise from gluon quark/anti-quark pair production and

with     it is reasonable to expect

•With these relations (7) and (8) become

Prof. M.A. Thomson Michaelmas 2011 197

Giving the ratio

•The sea component arises from processes such as                 . Due to 
the             dependence of the gluon propagator, much more likely to produce 
low energy gluons.  Expect the sea to comprise of low energy

•Therefore at low x expect the sea to dominate:

Observed experimentally

S(x) dominates

u(x) dominates

•At high x expect the sea contribution to be small

Note: would give ratio 2/3 as 
Experimentally

This behaviour is not understood.



Quark PDFs of the proton (3/3)
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• Fraction of proton momentum carried by quarks:  

 


• From experimentally measured structure functions: 

, 

∫
1

0
dxx[u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x)] ≈ ∫

1

0
dxx[u(x) + ū(x) + d(x) + d̄(x)] = ϵu + ϵd

∫
1

0
dxFep

2 (x) =
4
9

ϵu +
1
9

ϵd ≈ 0.18 ∫
1

0
dxFen

2 (x) =
1
9

ϵu +
4
9

ϵd ≈ 0.12
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Figure 2: Figure shows the summary plot for the HERAPDF0.2 at the Q2 = 10 GeV2.
The shown PDFs are the gluon, sea (which are scaled by a factor of 0.05) and the va-
lence distributions. The errors include the experimental (red), model (yellow) and the PDF
parametrisation (green) uncertainties.
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Figure 3: Figure shows a summary plot for direct comparison between the HERAPDF0.1
(cyan) and HERAPDF0.2 (red) at the Q2 = 10 GeV2.

4 Summary

In this proceedings a new set of parton distributions is determined from an NLO QCD fit
based on the precise combined HERA I data sets of neutral and charged current inclusive
cross-sections for e+p and e−p scattering, and an improved theoretical model which takes
the heavy charm and bottom masses into account. The consistent treatment of systematic
uncertainties in the joint data set ensures that experimental uncertainties on the PDFs can

DIS 2009

• → ,  → quarks carry 
about 50% of the proton momentum.


• The rest of the proton momentum is 
carried by neutral partons, which we 
identify with gluons. 


• Modern picture of the valence, sea quark 
and gluon PDFs on the proton. 

ϵu = 0.36 ϵd = 0.18



Color symmetry as a gauge group
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• 1972, Fritzsch, Gell-Mann: non-observation of colored quarks (confinement) 
→ promote color symmetry of hadron wave function to SU(3)c gauge 
symmetry of the strong interactions.


• Degrees of freedom: quarks (flavor=u,d,s,c,t,b) in fundamental 
representation and gauge fields (gluons) in adjoint representation of SU(3)c.


• Local gauge transformation (rotations in color space): 
 and , where 


• Copying quantum electrodynamics, QED (Yang, Mills, 1954), the classical 
Lagrangian of QCD: 


• Gluon field tensor: , 


• Generators  form the Lie algebra:  with antisymmetric 
structure constants .  


• Color algebra: , ,  , where 

 → determine color factors in perturbative QCD.

ψ′￼(x) = U(x)ψ(x) = eiωa(x)Taψ(x) A′￼μ(x) = U(x)(Aμ(x) −
i
g

∂μ)U†(x) Aμ = Aa
μTa

ℒQCD = ∑
f

ψ̄f (i∂μ + gTaAa
μ − mf )ψf −

1
4

Fa
μνFaμν

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μ Ac
ν a = N2

c − 1 = 1,…,8

Ta [Ta, Ta] = if abcTc

f abc

Tr(TaTb) = TFδab ∑
a

TaTa = CF
̂I ∑

b,c

f abc f dbc = CAδab

TF =
1
2

, CF =
4
3

, CA = 3



Running QCD coupling 
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• Essential feature of QCD is self-interaction of gluons: 



• 1973, Gross, Wilczek, Politzer, asymptotic freedom: the QCD coupling 
constant  decreases at large values of  or short distances,


ℒQCD = ℒ0 + gAa
μ ∑

f

ψ̄fTaAa
μψf − gf abc(∂μAa

ν )AbμAcν − g2 f eab f ecd Aa
μ Ab

ν AcμAdν

αs(Q2) = g2/(4π) Q2

αs(Q2) =
αs(μ2)

1 + αs(μ2)
12π (33 − 2nf )log(Q2/μ2)

41 9. Quantum Chromodynamics

Table 9.1: Unweighted and weighted pre-averages of –s(m2

Z) for each sub-
field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the ‰

2 averaging method.
The same ‰

2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
· decays & low Q

2 0.1173 ± 0.0017 0.1174 ± 0.0009 0.1177 ± 0.0013
QQ̄ bound states 0.1181 ± 0.0037 0.1177 ± 0.0011 0.1175 ± 0.0011
PDF fits 0.1161 ± 0.0022 0.1168 ± 0.0014 0.1179 ± 0.0011
e

+
e

≠ jets & shapes 0.1189 ± 0.0037 0.1187 ± 0.0017 0.1174 ± 0.0011
hadron colliders 0.1168 ± 0.0027 0.1169 ± 0.0014 0.1177 ± 0.0011
electroweak 0.1203 ± 0.0028 0.1203 ± 0.0016 0.1171 ± 0.0011
PDG 2023 (without lattice) 0.1175 ± 0.0010 0.1178 ± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023

α s
(Q

2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

Heavy Quarkonia (NNLO)
HERA jets (NNLO)

e+e- jets/shapes (NNLO+NLLA)
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Figure 9.5: Summary of determinations of –s as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
–s(m2

Z) = 0.1180 ± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

weighted fits with our standard procedure in columns two and three of Table 9.1. We observe
that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value

1st December, 2023

• Vacuum polarization loop in gluon 
propagator: screening due to quarks 
overcomed by anti-screening due to 
gluons:

• → explains Bjorken scaling for large  and predicts its violation.


• In the opposite limit of small  and large distances,  becomes large 
→ “infrared slavery” and confinement of quarks into color-singlet hadrons.

Q2

Q2 αs(Q2)

7.9 Running Coupling Constant for QCD 169

7.9 Running Coupling Constant for QCD

The (f behavior of the QCD coupling, a.(Q2) , turns out to be very different from
that for a(Q2). The manipulations of the QCD graphs needed for the calculation
of a,(Q2) carries over from the discussion of a(Q2). The final answer, (7.57), is
therefore also true for as (Q2), but there is a crucial difference: the coefficient of
log (Q2/JL2) is not the same. To determine the coefficient, we must calculate /(q2)
in QCD. The equivalent of Fig. 7.4 is, in slightly modified symbolic notation,

[ {1-¢-Q-9'} (758)

where the extra terms arise from the color self-coupling of the gluons, and where
C and T stand for "Coulomb" and" transverse" gluons, respectively, see Section
6.13. In the covariant gauge, it can be shown that these QCD diagrams yield the
following coefficient of log (Q2/JL2):

as{JL2) ( 2 )
4'17' -3 n/- 5 + 16 ,

in contrast to the QED coefficient of (7.57),

a{JL2)
4'17' 3'

(7.59)

(7.60)

The consecutive terms in (7.59) represent the contribution of the consecutive
loops in (7.58). The first loop is familiar; the gluon can fluctuate into a virtual qq
pair, just as a photon can fluctuate into an e + e - pair. There is, however, one loop
for each quark flavor; hence, - n/, where n/ is the number of flavors. The QED
result, was written for one flavor, "n/' -+ 1 (i.e., j.ust the e + e loop).
However, (7.60) is consistent with the first term of (7.59) because there is a factor
of 2 mismatch in the definitions of a and as, see (2.95). The relation between a
and as is discussed in more detail in Sections 10.4 and 10.7. We see that the
fermion loops contribute a negative coefficient. So does the loop with two
transverse gluons with a coefficient - 5. One can in fact prove a theorem that all
these loops have to lead to the same (negative) sign because they are all related to
physical cross sections for producing lepton, quark, or gluon pairs. Symbolically,

(7.61 )



Summary: Foundations of QCD

19

• The quark model for hadron spectroscopy, Gell-Mann, Nobel Prize 1969


• Bjorken scaling in DIS, Friedman, Kendall, Taylor, Nobel Prize 1990


• Asymptotic freedom of QCD, Gross, Politzer, Wilczek, Nobel Prize 2004


• Discovery of J/𝜓, Richter, Ting, Nobel Prize 1976


• Renormalization of Yang-Mills gauge theory, t’ Hooft, Veltman, Nobel Prize 1999


• Spontaneous broken symmetry, Nambu, Kobayashi, Maskawa, Nobel prize 2008

 In QCD as in a quantum field theory, the ability to describe high-energy 
scattering rests on 2 concepts:


• Renormalization: handles infinities in loop integrals and allows to sum all 
orders of perturbation theory, Tomonaga, Schwinger, Feynman, Nobel Prize 1965; 
t’ Hooft, Veltman, Nobel Prize 1999; Wilson, Nobel Prize 1982


• Factorization: separation of short-distance matrix elements described by 
perturbative QCD from long-distance PDFs describing hadron structure, 
Collins, Soper, Sterman, 1987/89



Experimental confirmation of QCD (1/2)
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• Scaling violations of the structure functions in  deep inelastic scattering


• 1978, PETRA, Observation of 3-jet events in  annihilation: evidence for 
gluons with the angular distribution consistent with spin-1 vector gluons.

ep

e+e−

• 1981, PETRA, Observation of 4-jet events: evidence for gluon self-interaction, 
i.e. non-abelian nature of QCD.

Evidence for Gluons

In QED, electrons can radiate photons. In QCD, quarks can radiate gluons.

Example: e
�
e
+ ! qq̄g

�

e�

e+

q̄

g

q

Qe
Qqe

p
↵s

M ⇠ Qq

q2

p
↵
p
↵
p
↵s

Giving an extra factor of
p
↵s in the matrix element, i.e. an extra factor of ↵s

in the cross-section.

In QED we can detect the photons. In QCD, we never see free gluons due to
confinement.

Experimentally, detect gluons as an additional jet: 3-jet events.
– Angular distribution of gluon jet depends on gluon spin.

Prof. Tina Potter 7. QCD 24

Evidence for Gluon Self-Interactions
Direct evidence for the existence of the gluon self-interactions comes from 4-jet
events:

�
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g

q
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e+
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g

g

q
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e�

e+

q̄

q

q̄

q

The angular distribution of jets is sensitive to existence of triple gluon vertex
(lower left diagram)

qqg vertex consists of two spin 1/2 quarks and one spin 1 gluon
ggg vertex consists of three spin-1 gluons
) Di↵erent angular distribution.
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Evidence for Gluon Self-Interactions
Direct evidence for the existence of the gluon self-interactions comes from 4-jet
events:
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ggg vertex consists of three spin-1 gluons
) Di↵erent angular distribution.
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Experimental confirmation of QCD (2/2)
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• November 1974, “November revolution”: discovery of J/𝜓 meson and its 
exited states suggesting a new charm quark → charmonium spectrum 
described using QCD potential models → evidence of color charge interaction 
and acceptance of Standard Model. 20 2 EXPERIMENTAL FOUNDATIONS

Fig. 2.1.2 Charmonium Spectroscopy. Note the P-waves 3PJ

and the Radiative Transitions.

states. In fact, the average velocity-squared of the charmed
quarks in the bound states was computed to be (v/c)2 
1/25. The bound states of the cc̄ system that resulted
are shown in Fig. 2.1.2.

The most relevant result in Fig. 2.1.2 was the exis-
tence of the P wave states that lie between the 3.105
and 3.695GeV states. For a pure Coulomb potential the
P wave states would be degenerate with the 3.695 state.
However, for a linear potential, the 23S1 state resides
at higher energy than the P wave states, as shown in
the figure, because the 23S1 has a radial node. The ex-
istence of these states led to the main point of Ref. [82]:
there are additional states which could be found exper-
imentally at SPEAR and they constitute strong, new
evidence for the charm hypothesis! Strong E1, electric
dipole, transitions would produce monochromatic pho-
tons when the 3.695 state decays to one of the P waves
and then additional monochromatic photons should ap-
pear when each P wave decays to the 3.105 state! These
monochromatic photons should be “easy” to find at
SPEAR because it had a 4⇡ general purpose detec-
tor, the Mark I. The energies of the P waves and the
strengths of the E1 transitions followed from the wave
functions found from the radial Schrodinger equation.
These results were catalogued in Ref. [82] and were re-
fined in later more ambitious publications. Of course,
the wave functions and the radiative transition rates
depend much more sensitively on the parameters in the
potential than the energies of the P waves themselves.
In any case, the predictions of Ref. [82] were reason-
able guides for the experimental program which discov-
ered the states and the radiative transitions in 1976, the
same year that the charmed D mesons were also identi-

fied in the final states of the electron-positron collisions!
Many more predictions and calculations were presented
in Ref. [82]] and in similar works done by other groups
[83]. Some of these points will be discussed in later chap-
ters in this journal review. In addition, more sophisti-
cated potentials than Eqn. (2.1.2) were eventually stud-
ied. Tensor interactions, fine and hyperfine interactions
were added in, and their effects are shown in some of the
splittings in Fig. 2.1.2 (Ref. [82, 83]). And the influence
of the nearby threshold at Mc on the bound states was
also accounted for. All of these developments did not
change the main thrust of Ref. [82]: the existence of the
P wave states and their radiative transitions were spe-
cial to the charm quark interpretation of the SPEAR
experiment and gave additional motivation to the early
acceptance of the Standard Model.

2.1.3 Electron-Positron Colliders at Stanford

Now let’s change the viewpoint of this article and turn
to the accelerator physicists and the experimentalists at
SPEAR. There is a cliché that behind every invention
there is a visionary. In the case of electron-positron col-
liders, one of the field’s several visionaries was definitely
Gerry O’Neil. Other visionaries were Burt Richter and
Martin Perl. Professor O’Neil taught me physics in col-
lege, but he was more interested in building accelera-
tors to collide electrons and positrons head-on in their
center of mass frame to create pure electromagnetic en-
ergy and search for new states of matter. I recall that
he traveled to Novosibirsk, where a collider was being
constructed, several times during a one semester under-
graduate course on modern physics. Upon each return
he “debriefed” his class on the progress of his efforts.
In 1965 Gerry O’Neil and others from Princeton and
Stanford built two 300 MeV electron storage rings in
the High Energy Physics Laboratory (HEPL) at Stan-
ford. These rings resulted in electron-electron collisions
which successfully increased the limits of validity of
Quantum Electrodynamics. However, it was basically
a “single experiment” machine, so during construction
Gerry and his collaborators also sketched an outline of
a 3ĠeV electron-positron colliding beam facility. These
ideas evolved into the blueprints for the famous SPEAR
collider at SLAC. To many persons’ surprise, just as
electron-positron collider ideas were gaining traction,
Gerry’s visionary ideas moved in a different direction:
to outer space projects, such as a permanent space sta-
tion in an earth orbit. He left the fledgling field of col-
liders just as it was about to yield great discoveries!

The construction of SPEAR began in 1970 under
the direction of Burt Richter and John Rees, and it was
completed quickly (in 20 months, four months ahead of

• QCD predicts existence of exotic hadrons, which are not allowed in the quark 
model: XYZ tetraquarks (Belle, 2003; BES, 2013), pentaquarks (LHCb, 2015), 
glueball and hybrid mesons (candidates available, need confirmation). 



QCD: a broad picture
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• Simple QCD Lagrangian leads to a vast array of successes in explaining and 
predicting phenomena in low-energy and high-energy nuclear physics. 


• It is active field of research with many open questions:

• Focus of these lectures is collinear PDFs of the proton, nuclei and photon:

• fundamental structure probed in high-energy scattering processes

• initial condition for heavy-ion scattering

• Standard Model precision studies and background for searches of new 
physics 

Structure of QCD vacuum, 
confinement, and origin of 
mass

Quark-gluon structure of proton 

and nuclei including spin and kT

QCD phase transitions, new 
regimes of strong interactions, 
quark-gluon plasma



Origin of scaling violations in QCD
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• The parton model predicts exact Bjorken scaling of the 
DIS structure functions . 


• In full QCD, the scaling is only approximate with 
logathmic dependence on the photon virtuality . 

F1,2(x)

q2 = − Q2

• Fundamental reason: 

- parton model: transverse momenta of partons are limited,  GeV


- QCD: quark and gluon  allowed to be large, 

kt ≤ μ0 ∼ 1
kt kt ≤ Q2

e, k

p

e′, k′

X

γ∗, q = k − k′

Introduction: QCD (8/37)

Hard Processes

Collinear Singularities
Violation of scaling is inevitable in QFT

P

q

k

kB

A

kC

Particle virtualities/transverse momenta in
QFT are not limited. In particular, in a DIS
process, “partons” (quarks and gluons) may
have transverse momenta up to

k2
⊥ ! Q2 = |q2|.

As a result, the number of particles turns out
to be large in spite of small coupling :

∫

dw ∝
∫ Q2

αs

π

dk2
⊥

k2
⊥

∼
αs

π
lnQ2 = O(1) .

Such – “collinear” – enhancement is typical for QFTs with dimensionless
coupling – “logarithmic” Field Theories.

Physically, a QFT particle is surrounded by a virtual coat; its visible
content depends on the resolution power of the probe λ = 1

Q = 1√
−q2

• Probability  to produce extra partons is large despite 

small coupling constant : 


• Leading Logarithmic Approximation (LLA): 


w
αs(Q2) w ∝

αs

2π ∫
Q2

dk2
⊥

k2
⊥

=
αs

2π
ln Q2 ∼ 1

F1,2(x, Q2) =
∞

∑
n=0

fn(x)( αs

2π
ln Q2)

n

• Such logarithmic behavior is a general feature of QFT with dimensionless 
coupling constant → the “virtual coat’’ of partons depends on the resolution . Q2



Parton ladder in LLA
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• The axial gauge  → only 2 physical gluon polarizations 
contribute → no need to introduce ghosts+only ladder-type diagrams contribute:

A+(x) = A0(x) + A3(x) = 0

Yu.L. Dokshitzer, D.I. Dyakonov and SI. Troyan, Hard processes in quantum chromodynamics 277

hadron, then this 5-function must be rewritten as 5(x — z). As a result, the structure function of
the hadron in such a theory simply coincides with the distribution of “quarks” with respect to the
fraction of momentum x = z that they carry. This distribution can be found easily if the wave
function of the “quarks” in the hadron is known The g4’3 theory (and it alone of the theories that
we know of) would therefore be an ideal instrument for describing exact Bjorken scaling in a
hadron world composed exclusively of bosons. However, for reasons beyond our control objects
with half-integral spins are also found among the hadrons. We therefore will turn to field models
involving fermions.
Scalar particles, vector mesons (in an electrodynamics-type model), or Yang—Mills self-inter-

acting gluons can serve as the carrier of the interaction between fermions (henceforth, putting our
cards on the table, we call them quarks). Here the situation changes radically in comparison with
the g4’3 model: the coupling constant is now dimensionless, and the quantity g2/4it2 ln (~q2~/m2)
becomes the real expansion parameter of the amplitude with respect to the number of field inter-
actions (i.e., a parameter of perturbation theory).
Therefore, despite the smallness of g2, the creation cross section of many particles becomes

large with increasing transferred momentum q2~.In other words, at large q2~processes in which
the original quark a’ (see fig. 2) undergoes several decays before absorbing a virtual photon will
make a finite contribution to the structure functions. This means that in a field theory with a
dimensionless coupling constant an electron interacts not with the dressed quark itself, but with
one of the point virtual particles (“partons”) that form the “coat” of the dressed quark. The number
of decays increases with increasing q2~:by improving the “resolution” 1/~q2~,we penetrate more
andmore deeply into the cloud of virtual particles and encounter there more and more “partons”.
The structure functions therefore will inevitably vary with q2. How rapidly? This is determined
by the rate at which the number of decay compartments increases with q2, that is, by the quantity
g2(q2). In model examples of the pseudoscalar and vector coupling of fermions on whose basis
Gribov and Lipatov [30, 31] have developed a method of investigating deep inelastic scattering
in a field theory, the classical “zero-charge” phenomenon [9] leads to an effective coupling which
increases with q2: the coat becomes denser toward the center, and the violation of Bjorken scaling
becomes increasingly strong. This is the case all the way to the critical values of q2 near the ultra-

q I /

a!’JKh ~

Fig. 2. Typical diagram entering the virtual photon— Fig. 3. Structure of the coat of a dressed particle in (a) gp3
quark absorption cross section. theory; (b) electrodynamics; (c) QCD.Typical diagram for  DISγ*p

• Leading order (LO) in  (Born term) →


• We are interested in the structure functions ~ → 
use cut diagram notation → dashed lines show cut 
propagators on mass shell → 

αs

|ℳ |2

2πδ+(p′￼2 ) p p

p
′

µ ν

q q
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Fig. 4. Examples of “non-parton” diagrams. Graphs f—i are specific ofa non-Abelian theory.

is important only for those processes in which the same kinematics have large probabilities. To be
more precise, the interference is significant if the product of the amplitudes of two different processes
is large enough when the kinematics of these processes coincide.
As emphasized in the previous subsection, the essential kinematical domain for deep inelastic

scattering is given by the “ordering” relations (7) and (8). In other words, the gluon in the diagram
5b normally has a much larger transverse momentum than that of the diagram Sa. Therefore, it
looks plausible that processes Sa and 5b should not interfere, i.e. the contributions Se and Sf
should be negligible.
This, indeed, proves to be correct [34, 30] for the model with pseudoscalar glue (the interaction

Lagrangian L1~~= g~y5~I,’p).It can be directly verified that the use of the building blocks of any
of the “nonparton” diagrams in fig. 4 (where the wavy line is a pseudoscalar particle) leads to small
terms of the type (1) in the cross section. This proves the legitimacy of the parton interpretation
for this model.

S~

9 a ‘, ,, I’ ‘~ r

c)d)e)+)
Fig. 5. A sum of two amplitudes squared rewritten as a sum of diagrams for cross sections.

Examples of “non-parton” diagrams that do 
not contribute to LLA

• Direct calculation: 

 

→ same as in the parton model.

4πmpŴμν(γ*q → q) =
Nc

Nc

e2
q

2
(2π)δ+((p + q)2)Tr( ̂p′￼γμ ̂pγν) = πe2

q
x

Q2
δ(ξ − x)Tr( ̂p′￼γμ ̂pγν)



Parton ladder: real gluon emission (1/2)
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• Let us start adding corrections using a 
perturbation series in , but keeping only 

-enhanced terms → LLA.


• Real gluon emission off initial quark: 

αs
log Q2

p p

p′µ ν

kt t

q q

4πmpŴμν(γ*q → qg) = ∫
d4k

(2π)4
2πδ+(p′￼2 )2πδ+(k2)CF

g2
s e2

q

2 ∑
pol

ū(p) ̂ϵ
̂t

t2
γν

̂p′￼γμ
̂t

t2
̂ϵ*u(p)

• Color factor for this diagram is  


• Sudakov decomposition of four-vectors in terms of light-cone vectors  and : 
, where 


• Parton momenta: , , 


• Trace calculation:  


• Delta functions: ,

(1/Nc)Tr(TaTa) = CF = 4/3

p n
lμ = αpμ + βnμ + l⊥μ p2 = n2 = (l⊥ ⋅ p) = (l⊥ ⋅ n) = 0

p = p q = − (x /ξ)p + n k = (1 − z)p + βn + k⊥

∑
pol

… = Tr( ̂p′￼γμ ̂t ̂ϵ* ̂p ̂ϵ ̂tγν) ≈ 2k2
⊥

1
1 − z

1 + z2

1 − z
Tr( ̂p′￼γμ ̂pγν)

δ+(p′￼2 ) = δ((Q2/x)(zξ − x)) =
x

zQ2
δ(ξ − x /z)



Parton ladder: real gluon emission (2/2)
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•  


• Loop integration: 


• Putting everything together: 





• Integration over  gives: , where  regulates small-

divergence corresponding to collinear gluon emission.

δ+(k2) = δ(2(p ⋅ n)(1 − z)β − k2
⊥) =

1
2(p ⋅ n)(1 − z)

δ(β − k2
⊥/[2(p ⋅ n)(1 − z)])

d4k = (p ⋅ n)dzdβd2k⊥ = π(p ⋅ n)dzdβdk2
⊥

4πmpŴμν(γ*q → qg) = ∫
1

x

dz
z ∫

Q2

m2

dk2
⊥

k2
⊥

δ(ξ − x /z)
αs

2π
Pqq(z)

x
Q2

πe2
qTr( ̂p′￼γμ ̂pγν)

k2
⊥ ∫

Q2

m2

dk2
⊥

k2
⊥

= log(Q2/m2) m2 k⊥

•  is the quark-quark splitting function ~ 
probability for a quark to emit quark a with momentum fraction 
 and a gluon with momentum fraction .


• Diverges at , which is unphysical → regulated by 
virtual correction to the quark propagator. 

Pqq(z) = CF
1 + z2

1 − z

z 1 − z

z → 1
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z

1−z

= CF ·
1 + z2

1 − z

z

= CF ·
1 + (1−z)2

z
z

= TR ·
[

z2 + (1−z)2
]

z

= Nc ·
1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) , g [q]

q (z) , q[q̄]
g (z) , g [g ]

g (z)



Parton ladder: gluon loop
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• In addition to real gluon emission, ladder-type 
graphs include virtual corrections → lead to 
ultraviolet (UV) divergences → handled by 
renormalization of quark propagator.


• Instead of an explicit calculation, notice that they 
are concentrated at  → of the form .z = 1 δ(1 − z)

p p

p
′

µ ν

q q

• Total probability (Born+  correction) of finding a quark inside a quark is 1 →

.


• Virtual corrections regularize   at  → so-called “+ prescription” 




• These conditions fix the numerical coefficient in front of . Final result 

for quark-quark splitting function: . 

αs

∫
1

0
dzPqq(z) = 0

Pqq(z) z = 1

∫
1

0
dz

f(x)
(1 − z)+

= ∫
1

0
dz

f(z) − f(1)
1 − z

δ(1 − z)

Pqq(z) = CF
1 + z2

(1 − z)+
+ 2δ(1 − z)



Gluon-initiated parton ladder
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• A parton ladder can also be initiated by gluons.


• Contribution to the hadronic tensor at parton level:
p p

p′µ ν

k

t t

q q

4πmpŴμν(γ*g → qq) = ∫
d4k

(2π)4
2πδ+(p′￼2 )2πδ+(k2)TRg2

s e2
q

1
2 ∑

pol

1
t4

Tr( ̂p′￼γμ ̂t ̂ϵ ̂k ̂ϵ* ̂tγν)

• Color factor for this diagram is  


• Using Sudakov decomposition, after some algebra:


1/(N2
c − 1)Tr(TaTa) = 1/2 = TR

4πmpŴμν(γ*g → qq) = ∫
1

x

dz
z ∫

Q2

m2

dk2
⊥

k2
⊥

δ(ξ − x /z)
αs

2π
Pqg(z)

x
Q2

πe2
qTr( ̂p′￼γμ ̂pγν)

•  is the gluon-quark splitting function ~ 
probability for a gluon to emit a quark a with momentum 
fraction  and a quark with momentum fraction .

Pqg(z) = TR(z2 + (1 − z)2)

z 1 − z
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1 − z

z

= CF ·
1 + (1−z)2

z
z

= TR ·
[

z2 + (1−z)2
]

z

= Nc ·
1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) , g [q]

q (z) , q[q̄]
g (z) , g [g ]

g (z)

1-z



Parton ladder: more rungs and splittings
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• One can add more rungs to the parton ladder and combine  
different types of parton-parton splittings.


• Nested integrals → to build up  contribution, 
transverse momenta should be strongly ordered: 

log Q2

−k2
1⊥ ≪ − k2

2⊥ ≪ ⋯ ≪ − k2
n⊥ ≪ Q2
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q

P

2

3

4

5

1

P

µ2
! t1 ! t2 ! t3 ! t4 ! t5 !

P

Q2

Four basic splitting processes :
q → q(z) +g z = k5/k4

Φq
q(z) = CF ·

1 + z2

1 − z
,

• All parton splitting functions to one-loop accuracy: 


• 


• 


• 


• 

Pqq(z) = CF ( 1 + z2

(1 − z)+
+

3
2

δ(1 − z))
Pqg(z) = TR (z2 + (1 − z)2)

Pgq(z) = CF
1 + (1 − z)2

z

Pgg(z) = 6 ( z
(1 − z)+

+
1 − z

z
+ z(1 − z)) + ( 11

2
−

nf

3 ) δ(1 − z)
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Symmetries of splitting functions
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• Exchange decay products  (for ): 


• 


• 


• 

z → 1 − z z < 1

Pqq(z) = Pgq(1 − z)

Pgq(z) = Pgq(1 − z)

Pgg(z) = Pgg(1 − z)

• Exchange the parent and the offspring  (for ): 


• 


• 


• 

z → 1/z z < 1

Pqq(1/z) = −
1
z

Pqq(z)

Pgg(1/z) = −
1
z

Pgg(z)

Pgq(1/z)/CF =
1
z

Pgq(z)/TR
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• Quark-gluon symmetry (super-symmetry relation): 


•  → it sufficient to know quantum 
electrodynamics to restore the structure of the gluon self-interaction!

Pqq(z)/CF + Pgq(z)/CF = Pqg(z)/TR + Pgg(z)/Nc

1-z



-dependent PDFs (1/2)Q2
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• We calculated  and  contributions to parton hadronic tensor  
keeping only terms proportional to  (LLA).


• Recalling the connection between the parton and proton hadronic tensors 

 → DIS cross section on proton in LLA: 

𝒪(α0
s ) 𝒪(α1

s ) Ŵμν
log Q2

Wμν = ∑
i=q,g

∫
1

0

dξ
ξ

Ŵμν fi(ξ)

dσ
dxdQ2

=
d ̂σ0

dxdQ2 ∑
q

e2
q (fq(x) +

αs

2π
log(Q2/m2)∫

1

x

dz
z [Pqq(z)fq(x /z) + Pqg(z)fg(x /z)]) + …

• Absorb  into definition of PDFs:    




• PDFs depend on  and obey the integro-differential evolution equations, 
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations, 1972-1977 → 
renormalization group equations for PDFs:


log(Q2/m2)

fq(x, Q2) = fq(x) +
αs

2π
log(Q2/m2)∫

1

x

dz
z [Pqq(z)fq(x /z) + Pqg(z)fg(x /z)]…

Q2

Q2 ∂
∂Q2 (

fq(x, Q2)

fg(x, Q2)) =
αs

2π (
Pqq Pqg

Pgq Pgg) ⊗ (
fq(Q2)

fg(Q2))   Pij ⊗ fj(Q2) ≡ ∫
1

x

dz
z

Pij(z)fj (x /z, Q2)



-dependent PDFs (2/2)Q2
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• In QCD due to parton emission, the partonic content of hadrons (proton, 
pion, nucleus, real photon,…) depends on the photon virtuality .Q2

10.5 Scaling Violations. The Altarelli-Parisi Equation 217
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Fig. 10.9
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'Y*(Q2) sees (softer)
quarks inside q(x)
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The quark structure of the proton as seen by a virtual photon as Q2

The Q2 evolution of the quark densities is determined by QCD through (10.36).
By considering the change in the quark density, t::.q( x, Q2), when one probes a
further interval of t::.log Q2, (10.36) can be rewritten as an integro-differential
equation for q(x, Q2):

d ( 2) as fl dy ( 2) (X)
dlogQ2 q x,Q = 27T x yq y,Q Pqq y . (10.37)

This is an "Altarelli-Parisi evolution equation." The equation mathematically
expresses the fact that a quark with momentum fraction x [q(x, Q2) On the
left-hand side] could have come from a parent quark with a larger momentum
fraction y [q(y, Q2) On the right-hand side] which has radiated a gluon. The
probability that this happens is proportional to aSPqq(x/y). The integral in
(l0.37) is the sum over all possible momentum fractions y( > x) of the parent.
To summarize: QCD predicts the breakdown of scaling and allows us to

compute explicitly the dependence of the structure function on Q2. Given the
quark structure function at some reference point q(x, we can compute it for
any value of Q2 using the Altarelli-Parisi equation (l0.37). The experimental
results for q(x, Q2), or, to be precise, F2(x, Q2), are displayed in Fig. 10.10.
Moment analysis is often used to show that the Q2 variation of the structure
function is described by the differential equation (l0.37). This procedure is purely
technical and of nO interest to us (see, however, Exercise 10.16). The systematics
of the Q2 dependence should be noted, however. Around x = 0.25 (w = 4), the
structure function is found to scale, and Fig. 9.2 displays the absence of Q2
dependence at this particular x value. But for x :s 0.25, the structure function
increases with Q2, while for x 0.25, it decreases. Another way to state this
result is that we resolve increasing numbers of "soft" quarks with increasing Q2.
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FIG. 1: Kinematic coverage of the DIS and collider pp-pp̄ exper-
iments. For pp and p° p̄ colliders, the Bjorken x1 and x2 of the
interacting quarks are related to the mass M of the Drell-Yan pair
and its rapidity y as x1,2 = M/

p
S exp(±y) where S is the center of

mass energy squared for the experiment.

processes such as Drell-Yan pair production. The QCD
Q

2 evolution, now known to Next-to-Next-to-Leading Or-
der (NNLO) [1], allows to calculate the parton densities for
a given x for higher values of Q

2. Therefore, PDFs deter-
mined in DIS experiments can be used for precise predictions
of the production cross sections at pp colliders, for example
the LHC. Fig. 1 shows the kinematic coverage of the fixed
target DIS experiments and HERA compared to pp̄ and pp

colliders, the Tevatron and LHC. While the LHC extends the
range greatly towards low x for low Drell-Yan pair masses, for
the W and Z bosons production (M ª 100 GeV) and for the
central rapidity range of the detectors (|y| < 2.5) the Bjorken-
x range (0.0005° 0.05) is fully covered by HERA. Further-
more, HERA covers completely the x range for a light Higgs
boson (Mh ª 128 GeV), which in the Standard Model is pre-
dominantly produced via gg fusion with the top quark in the
loop. Measuring the ratio of the Higgs to Z production rate
experimentally and using the HERA based predictions for the
Z and Higgs rates, it is possible to place strict limits on certain
scenarios of non-standard Higgs production.

III. SUMMARY OF RESULTS FROM THE HERA-I
PERIOD

Most of the information on the proton structure function
at low x comes so far from the data collected at HERA in
1992-2000 running period (HERA-I). Most of the structure
function analyses for this data sample have been finalized, for
example Fig. 2 shows a summary of the F2 structure function
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FIG. 2: Structure function F2 as a function of Q
2 based on HERA-I

measurements of H1 [2, 3] and ZEUS [4] collaboration compared to
results from fixed target experiments BCDMS [5] and NMC [6].

measurements by the H1 [2, 3] and ZEUS [4] collaborations
at HERA and also by fixed target experiments BCDMS [5]
and NMC [6].

The precision achieved for the F2 data in 0.0005° 0.05
Bjorken-x range is about 2°3% which leads to about 5% PDF
uncertainty on the W,Z production cross section at LHC1. To
improve this precision, further analysis of low Q

2 < 100 GeV2

HERA-I data is in progress by the H1 collaboration. In addi-
tion, a better understanding of the systematic uncertainties is
possible if H1 and ZEUS data are compared and combined
in a common dataset in a model independent way. A proce-
dure for this combination has been developed recently [7], the
combination is now under study by the two collaborations.

IV. NEW RESULTS FROM HERA-II

During the shutdown in 2001°2002, HERA underwent an
extensive upgrade aimed to increase the luminosity and also

1 Two quarks are needed for W,Z production in a Drell-Yan process com-
pared to one probed in DIS, therefore PDF uncertainties for Drell-Yan are
generically twice larger than for DIS. For a rigorous study see [11].

• The virtuality  determines the spacial 
resolution : higher  give more 
detailed partonic picture:

Q2

λ ∼ 1/ Q2 Q2

• Parton emission leads to scaling violations 
of the DIS structure functions .


• Large-  partons emit partons with  smaller 
 →  evolution decreases  at 

large  and increases at small .

F1,2(x, Q2)

x
x Q2 F2(x, Q2)

x x



Factorization theorem (1/4)
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• We derived that in LLA    → the cross section 

of DIS on proton is a product of the LO  cross section and the quark 
PDF  absorbing all collinear logarithmic divergences.


• It is a particular example the QCD factorization theorem, which is valid 
beyond LLA and order-by-order in perturbative QCD: 

dσ
dxdQ2

=
d ̂σ0

dxdQ2 ∑
q

e2
q fq(x, Q2)

γ*q → q
fq(Q2)

F2(x, Q2) = ∑
i=q,q̄,g

∫
1

x
dξCi ( x

ξ
,

Q2

μ2
, αs(μ2)) fi(ξ, μ2)
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P

Q2

Four basic splitting processes :
q → q(z) +g z = k5/k4

Φq
q(z) = CF ·

1 + z2

1 − z
,

• Coefficient functions  are process-specific, but do not depend on the target 
→ calculated in perturbation series taking quarks and gluon as a target.


• PDFs  are process-independent (universal), but depend on the target.

Ci

fi(ξ, μ2)

• Factorization scale  separates (factorizes) the perturbative and 
non-perturbative effects.

μ

•  does not depend on  at given order of pQCD 
→ guaranteed by the DGLAP equations.

F2(x, Q2) μ
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• To explain factorization concepts, consider DIS on a quark target. 


• Expand  and  as a series in powers of : 

• 


• 


• → 


• At leading order, ,  → 


• To one-loop accuracy and taking into account the real gluon emission, 
virtual corrections and non-logarithmic terms: 


Ci fi αs
fi = f (0)

i + f (1)
i + …

Ci = C(0)
i + C(1)

i + …
F2,i = C(0)

i ⊗ f (0)
i + C(0)

i ⊗ f (1)
i + C(1)

i ⊗ f (0)
i …

f (0)
i/i (ξ) = δ(1 − ξ) F2,i(x) = e2

qδ(1 − x) C(0)
q (x) = e2

qδ(1 − x)

F(1)
2,i

x
= e2

q
αs

2π
CF[∫

dk2
⊥

k2
⊥ ( 1 + x2

(1 − x)+
+

3
2

δ(1 − x)) + ( 1 + x2

1 − x (ln
1 − x

x
−

3
2 ) +

1
4

(9 + 5x))
+
]

• From factorization formula:  


• →  → gives the  splitting function and the 

NLO quark coefficient function 

F(1)
2,i = e2

q xf (1)
i/i (x) + C(1)

i (x)

f (1)
i/i (x, Q2) =

αs(Q2)
2π ∫

Q2

m2

dk2
⊥

k2
⊥

Pqq(x) Pqq

Cq(x) = CF ( 1 + x2

1 − x (ln
1 − x

x
−

3
2 ) +

1
4

(9 + 5x))
+
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• Different choices to group terms into the coefficient functions and PDFs are 
called factorization schemes.


• Modified minimal subtraction scheme,  scheme: absorb only the 
collinear-divergent term (+ universal constant from dim. reg.) in PDFs.


• Another frequently option is the DIS-scheme → absorb everything in PDFs: 


•  → 

•  

•  

• → simple parton model form of the DIS cross section and structure 
functions.

MS

xf (1)
i/i (x, Q2)DIS = F(1)

2,i /e2
q

Cq,q̄(x)DIS = e2
qδ(1 − x)

Cg(x)DIS = 0

• Expressions for the splitting functions  at NLO in 1980s, NNLO in 2000s, 
and N3LO is still work in progress (approx. solutions and special cases).  

Pij
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• One usually associates the factorization scale  with hard scale of the 
process:  (  in our DIS calculations).


• Small variations of  result in effects suppressed by additional power of : 

 → used to estimate missing higher 

order corrections (MHOU).

μ
μ = c Q2 = (0.5 − 2) Q2 c = 1

c αs
d

d log μ2

N

∑
n=0

αs(μ2)n ∑
i

C(n)
i ⊗ f (n)

i (μ2) ∼ 𝒪(αN
s )
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Figure 12: Ratio of cross sections to the NLO prediction using AFG-HO and
CTEQ5M1 as the photon and proton PDFs, respectively, and the scale set to ET/2
as a function of xobs

γ in regions of Ejet1
T . For further details, see the caption to

Fig. 11.
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• Example: dijet 
photoproduction at HERA 

γ

p

e

g

e

p

γ

g

(a) (b)

Figure 1: Examples of (a) direct and (b) resolved dijet photoproduction diagrams
in LO QCD.

26
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• One can define PDFs as matrix elements of QCD operators separated by light-
cone distances. 


• Below we consider the LO (Born contribution) of one quark flavor.


• Hadronic tensor: 


• Use , translation  

and completeness of states X → 


• Forward Compton scattering amplitude: 


• Optical theorem  


• Time-ordered product of quark e.m. currents: 




•  is the massless quark propagator.

mpWμν =
1

4π ∑
X

(2π)4δ4(p + q − pX)⟨p |Jμ(0) |X⟩⟨X |Jν(0) |p⟩

(2π)4δ4(p + q − pX) = ∫ d4xeix(p+q−pX) ⟨p |Jμ(0) |X⟩ = e−ix(p−pX)⟨p |Jμ(x) |X⟩

mpWμν =
1

4π ∫ dxiqx⟨p |Jμ(x)Jν(0) |p⟩

Tμν = i∫ dxiqx⟨p |T{Jμ(x)Jν(0)} |p⟩

Wμν = 2ℑmTμν

T{Jμ(x)Jν(0)} = e2
q ψ̄(x)γμSF(x)γνψ(0) + … = ∫

d4p′￼

(2π)4
e−p′￼xe2

q ψ̄(x)γμSF(p′￼)γνψ(0) + …

SF(p′￼) =
̂p′￼

p′￼2 + iϵ
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• Changing variables  and taking the imaginary part: 




• Introduce the quark correlator 


• → 


• We showed before that . Expressing vectors in 
Sudakov basis:  and  → 


• → in the expansion of  in terms of independent Lorentz vectors, one can 

keep only  → 


• In  integration, the component along  is fixed by the delta-function, while 

p′￼= q + k

mpWμν =
e2

q

2 ∫ d4k∫
d4x

(2π)4
e−ixk⟨p | ψ̄(x)γμ( ̂k + ̂q)γνψ(0) |p⟩δ((k + q)2)

Φ̂q
αβ(k) = ∫

d4x
(2π)4

e−ixk⟨p | ψ̄β(x)ψα(0) |p⟩

mpWμν =
e2

q

2 ∫ d4kδ((k + q)2)Tr{γμ( ̂k + ̂q)γνΦ̂q(k)}

δ((k + q)2) = x /Q2δ(ξ − x)
q = − xp + n k = ξp q + k = n + …

Φ̂q
αβ(k)

Φ̂q
αβ(k) ∝ ̂p Φ̂q

αβ(k) =
̂p

4(p ⋅ n) ∫
d4x

(2π)4
e−ikx⟨p | ψ̄(x) ̂nψ(o) |p⟩

d4k p

∫ dk−d2k⊥e−ixk = (2π)3δ(x+)δ2(x⊥)
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• Putting all factors together and using : 




• Recalling that  and summing over quarks: 





• Comparing with the LO expression 


• →  


• The quark distribution is given by a forward matrix element of two quark 
fields separated by the light-cone distance .


• Note*: No need to introduce gauge link in  gauge.

∫ dx+d2x⊥δ(x+)δ2(x⊥) = 1

mpWμν =
e2

q

4 (x /Q2) Tr{γμ ̂nγν ̂p}
p+

2(p ⋅ n) ∫
dx−

2π
e−ixx−p+⟨p | ψ̄(x) ̂nψ(0) |p⟩|x+=x⊥=0

F2(x, Q2)/x = − gμνmpWμν + …

F2(x, Q2)/x = ∑
q

e2
q

p+

2(p ⋅ n) ∫
dz−

2π
e−ixz−p+⟨p | ψ̄(x) ̂nψ(0) |p⟩z+=z⊥=0

F2(x, Q2)/x = ∑
q

e2
q fq(x, Q2)

fq(x, Q2) =
1
2 ∫

dz−

2π
e−ixz−p+⟨p | ψ̄(x)γ+ψ(0) |p⟩z+=z⊥=0

z−

A+(x) = 0

104 5 Gauge-Invariant Parton Densities

fq

W µν

Figure 5.6: Difference between structure functions and
PDFs.

Figure 5.7: Factorization in DIS at leading order.

functions, PDFs emerge in the parametrization of the quark correlator – as we will see
in Section 5.1.5 – which is universal by definition.

5.1.5 Operator Definition for PDFs

We can assume that the photon scatters off a quarkwithmassm inside the proton, ifQ2

is sufficiently large. The final state can therefore be split in a quark with momentum p
and the full remaining state with momentum pX. Constructing the (unpolarized) had-
ronic tensor for this setup is straightforward. First, we remark that pulling a quark out
of the proton at a space–time point (0+, 0–,0⊥) is simply 8!(0)|P〉. Then, we construct
the diagram for the hadronic tensor, the so-called handbag diagram, step by step:

X
k

= X |ψα(0) |P ,

X

p

k
ν

= u+"(p)
(
γ -)"! 〈X

∣∣8!(0)
∣∣P
〉
,

p

k k
ν µ

∼ [
γ , (/p +m

)
γ -]"!

〈
P
∣∣∣8"(0)

∣∣∣X
〉 〈
X
∣∣8!(0)

∣∣P
〉
,


