QCD and PDFs

We are pleased to inform you that the 2022 edition of the QCD@LHC conference will take place at LiCLab Orsay, France in the campus of Paris-Saclay University between 28th November and 2nd December 2022. This will be an in-person event only and the registration and call for abstracts will open on 3rd August 2022 on:

Following the link above, you will also find the scientific programme and a list of conveners for each of the

ttps://indico.cern.ch/e/QCDatLHC2022

These lectures will ...

- explain main theoretical and experimental results leading to development of quantum chromodynamics (QCD) and outline its concepts
- teach you how to calculate scaling violations for parton distribution functions (PDFs)
- give a taste of rich phenomenology of PDFs

Plan of lectures:

- Lecture 1: The quark model, deep inelastic scattering (DIS), the parton model, main concepts of quantum chromodynamics (QCD)
- Lecture 2: Scaling violations in QCD, DGLAP evolution equations, factorization theorem
- Lecture 3: Phenomenology of proton and photon PDFs

Literature:

- Lecture 1: Halzen, Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (1984); Kronfeld. Quigg, "Resource Letter: Quantum Chromodynamics", arXiv:1002.5032 [hep-ph]; Gross, Klempt et al. "50 Years of Quantum Chromodynamics", Eur. Phys. J C (2023) 1125
- Lecture 2: Dokshitzer, Diakonov, Troian, "Hard Processes in Quantum Chromodynamics", Phys. Rept. 58 (1980) 269; Sterman et al., "Handbook of perturbative QCD", Rev. Mod. Phys. 67 (1995) 157-248
- Lecture 3: Aschenauer, Thorne, Yoshida, "Structure functions", Review of Particle Physics, Particle Data Group; Nisius, Phys. Rept. 332 (2000) 165-317 [arXiv:hep-ex/9912049].

Flavor symmetry of strong interaction

- 50s–60s: Discovery of many new baryons and mesons (hadrons)
- Interaction is mediated by the strong interaction (nuclear force) acting at short distances ~ 1 fermi=10⁻¹⁵ m and short times ~ 10⁻²³ s

• Various theoretical approaches (Regge poles, current algebra, Yukawa interactions) \rightarrow impossible to construct quantum field theory of strong interactions.

- 1961, Gell-Mann, Ne'eman, The Eightfold Way: classification of hadrons using approximate flavor SU(3) symmetry → all hadrons grouped into multiplets
- \rightarrow prediction of Ω^- confirmed in 1964
- $\bullet \to \text{Gell-Mann-Okubo}$ mass formula
- $\bullet \rightarrow \text{idea of quarks}$

The quark model

- 1964, Gell-Mann and Zweig: hadrons are made up of 3 quarks forming the fundamental representation of flavor SU(3) $\rightarrow q(u, d, s) = 3$ and $\bar{q}(\bar{u}, \bar{d}, \bar{s}) = \bar{3}$.
- Quarks have fractional electric charges (2/3,-1/3,-1/3), baryon number B=1/3, spin 1/2, isospin I_z=(1/2,-1/2,0), and strangeness S=(0,0,-1).
- Mesons are $q\bar{q}$ bound states: $3 \otimes \bar{3} = 8 \oplus 1 \rightarrow$ flavor octets and singlets with allowed quantum numbers $J^{PC} = (0^{-+}, 1^{--}, ...)$
- Baryons are qqq states: $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_S \oplus \mathbf{8}_{M_S} \oplus \mathbf{8}_{M_A} \oplus \mathbf{1}_A$
- Spin content of baryon multiples: $2 \otimes 2 \otimes 2 = 4_S \oplus 2_{M_S} \oplus 2_{M_A} \rightarrow S=3/2, 1/2$

• Reasonable description of baryon static properties, e.g., the ratio of neutron and proton magnetic moments: $\mu_n/\mu_p = -2/3$ vs. $\mu_n/\mu_p(\exp.) = -0.68497945(58)$

Quarks and color

• Initially quarks treated as fictional due to non-observation of free particles with a fractional charge.

- Second challenge: problem with Fermi statistics since decuplet ground-state wave function appears to be symmetric in space × flavor × spin: $\Delta^{++} = uuu$ or $\Omega^{-} = sss$.
- 1964/65, Greenberg; Han, Nambu; Fritzsch, Gell-Mann: quarks carry an additive quantum number color \rightarrow need at least N_c=3 colors (red, green, blue) for the baryon wave function to be antisymmetric:

$$\Psi(q_1, q_2, q_2) = \Psi_{\text{space}}(x_1, x_2, x_3) \Psi_{\text{flavor}}(f_1, f_2, f_3) \Psi_{\text{spin}}(s_1, s_2, s_3) \Psi_{\text{color}}(c_1, c_2, c_3)$$
$$\Psi_{\text{color}}(c_1, c_2, c_3) = \frac{1}{\sqrt{6}} (\text{RGB} - \text{GRB} + \text{GBR} - \text{RGB} + \text{BRG} - \text{BGR})$$

• Experimental evidence of color-triplet quark model:

$$\pi^0 \to \gamma \gamma$$
 decay: $\Gamma = \frac{\alpha^2}{2\pi} \frac{N_c^2}{3^3} \frac{m_\pi^3}{f_\pi^2} = 7.75 \text{ eV}$
vs. $\Gamma(\exp.) = (7.86 \pm 0.54) \text{ eV}$

u, (d)

e⁺e⁻ annihilation and R-factor

Deep inelastic scattering and Bjorken scaling • Proton has internal structure in the proton of t

- (Stern, Nobel Prize 1943) and elastic form factors (Hofstadter, Nobel Prize 1961).
- 1968/694 (61) AC-1417-experiments on deeply in elastic electron-nucleon scattering:
- Photon virtuality $Q^2 = -q^2 = 4EE' \sin^2 \frac{\theta}{2}$
- Photon energy $\nu = E \frac{1}{p_1} E' \frac{p_3}{p_1}$ Invariant energy $W^2 = (q+p)^2 \approx 2\nu m_p$
- Bjorken variable $x = \frac{Q^2}{2(p \cdot q)} = \frac{Q^2}{2m_p(E E')}$

• Bjorken limit: Q^2 , W are Parge and x is fixed.

- o ™ott $1/Q^{6}$ EL ASTIC SCATTERING $Q^2 = -q^2$ Q^2/GeV^2
- For large scattering angles θ (large Q^2) $\rightarrow \sigma/\sigma_{Mott}$ is much larger than given by elastic form factors and scales, i.e., depends only on x and not on (x, Q^2) .
- 1968, Bjorken: Theoretical prediction of the scaling using current algebra.

The parton model

• 1969, Feynman: Bjorken scaling of inelastic scattering off proton can be interpreted as elastic scattering off point-like constituents of the proton, partons.

• In frame, where the proton has very high energy (infinite momentum frame), proton = collection of collinear massless partons carrying momentum fraction *x* of the parent proton.

• Parton distribution function (PDF) $f_i(x)$ is the probability to find parton *i* that carries a momentum fraction *x*.

• Momentum sum rule: $\sum_{i} \int_{0}^{1} dx x f_{i}(x) = 1$

$$f_i(x) = \frac{dP_i}{dx} = \frac{i}{p} \left(\frac{1-x}{p} \right)^{i}$$

DIS and structure functions (1/3)

• Electron-proton deep inelastic scattering (DIS)

• Photon virtuality
$$Q^2 = -q^2 = -(k - k')^2$$

• Bjorken variable $x = \frac{Q^2}{2(p \cdot q)}$
• Momentum fraction carried by photon $y = \frac{(p \cdot q)^2}{(p \cdot k)^2}$

• Scattering amplitude for this graph: $\mathcal{M} = \frac{e^2}{q^2} \bar{u}(k') \gamma^{\mu} u(k) \langle X | J_{\mu}(0) | p \rangle$

• DIS cross section:
$$d\sigma = \frac{|\overline{\mathcal{M}}|^2}{4\sqrt{(k \cdot p)^2}} dLips$$

• Lorentz invariant phase space:

$$dLips = (2\pi)^4 \delta^4 (k + p - k' - p_X) \frac{d^3 \vec{k'}}{2E_{k'}(2\pi)^3} \sum_X \frac{d^3 \vec{p}_X}{2E_{p_X}(2\pi)^3}$$

$$\frac{16\pi^3 \alpha^2 m}{2E_{p_X}(2\pi)^3} \frac{d^3 \vec{p}_X}{d^3 \vec{p}_X}$$

• Squaring the amplitude: $d\sigma = \frac{16\pi^3 \alpha^2 m_p}{q^4 (k \cdot p)} L^{\mu\nu} W_{\mu\nu} \frac{d^3 k'}{2E_{k'} (2\pi)^3}$

DIS and structure functions (2/3)

• Leptonic tensor: $L^{\mu\nu} = \frac{1}{2} \sum_{\text{pol}} \bar{u}(k) \gamma^{\nu} u(k') \bar{u}(k') \gamma^{\mu} u(k) = \frac{1}{2} Tr(\hat{k}' \gamma^{\mu} \hat{k} \gamma^{\nu}) = 2 \left(k^{\prime \mu} k^{\nu} + k^{\prime \nu} k^{\mu} - g^{\mu\nu} (k' \cdot k) \right)$

• Hadronic tensor:

$$4\pi m_p W_{\mu\nu} = \frac{1}{2} \sum_{\text{pol}} \sum_X (2\pi)^4 \delta^4 (k+p-k'-p_X) \langle p | J_{\nu}(0) | X \rangle \langle X | J_{\mu}(0) | p \rangle \frac{d^3 \vec{p}_X}{2E_{p_X}(2\pi)^3}$$

- In one-photon approximation for unpolarized DIS, 2 independent Lorentz structures respecting current conservation $q^{\mu}W_{\mu\nu} = 0$.
- Structure functions W_1 and W_2 parametrize composite structure of proton: $W_{\mu\nu} = -W_1 \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) + \frac{W_2}{m_p^2} \left(p_{\mu} - \frac{(p \cdot q)}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{(p \cdot q)}{q^2} q_{\nu} \right)$

• More common notation using structure functions
$$F_1 = m_p W_1$$
 and $F_2 = \nu W_2$:
 $W_{\mu\nu} = -\frac{F_1}{m_p} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) + \frac{F_2}{\nu m_p^2} \left(p_\mu - \frac{(p \cdot q)}{q^2} q_\mu \right) \left(p_\nu - \frac{(p \cdot q)}{q^2} q_\nu \right)$
• $F_1 = \left(-\frac{1}{2} g^{\mu\nu} + \frac{2x^2}{Q^2} p^\mu p^\nu \right) m_p W_{\mu\nu}$ and $\frac{F_2}{x} = \left(-g^{\mu\nu} + \frac{12x^2}{Q^2} p^\mu p^\nu \right) m_p W_{\mu\nu}$

DIS and structure functions (3/3)

• After some algebra:
$$L^{\mu\nu}W_{\mu\nu} = \frac{2Q^2}{m_p}F_1 + \frac{2Q^2}{m_p}F_2 \frac{1}{xy^2} \left(1 - y - x^2y^2 \frac{m_p^2}{Q^2}\right)$$

• Phase space of scattered electron: $\frac{d^{3}\overrightarrow{k'}}{2E_{k'}(2\pi)^{3}} = \frac{1}{2(2\pi)^{2}} \frac{m_{p}E}{Q^{2}} y^{2} dx dQ^{2} \text{ using}$ $(x, Q^{2}) \rightarrow (E', \cos \theta) \text{ transformation with Jakobian: } dx dQ^{2} = \frac{Q^{2}}{m_{p}} \frac{1-y}{y^{2}} dE' d\cos \theta$

• Putting all factors together:
$$\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \frac{1}{x} \left(xy^2F_1 + F_2 \left(1 - y - \frac{x^2y^2m_p^2}{Q^2} \right) \right)$$

• Reduced cross section:
$$d\sigma_r = \frac{xQ^4}{2\pi\alpha^2 Y_+} \frac{d\sigma}{dxdQ^2} = F_2 - \frac{y^2}{Y_+}F_L$$
, where $Y_+ = 1 + (1 - y)^2$

• Longitudinal structure function $F_L = F_2 - 2xF_1$ proportional to the cross section of longitudinally polarized photons.

DIS in quark parton model (1/2)

• In the parton model, DIS cross section is convolution of the cross section for scattering off a parton with its momentum distribution $d\sigma = \sum_{q} \int_{0}^{1} d\xi \hat{\sigma}_{0}^{q}(\xi p) f_{q}(\xi)$

• At the level of hadronic tensors: $W_{\mu\nu} = \sum_{q} \int_{0}^{1} \frac{d\xi}{\xi} \hat{W}^{q}_{\mu\nu} f_{q}(\xi)$

• Direct calculation of hadronic tensor for partons = spin-1/2 fermions of charge e_q :

$$4\pi m_p \hat{W}^q_{\mu\nu} = \frac{e_q^2}{2} \sum_{\text{pol}} (2\pi)^4 \delta^4(p+q-p') \frac{d^3 p'}{2E_{p'}(2\pi)^3} \bar{u}(p) \gamma_\nu u(p') \bar{u}(p') \gamma_\mu u(p)$$

Now p, p' refer to quark momenta

• Sum over polarizations:
$$4\pi m_p \hat{W}^q_{\mu\nu} = \frac{e_q^2}{2} (2\pi)^4 \delta^4 (p+q-p') \frac{d^3 p'}{2E_{p'}(2\pi)^3} Tr(\hat{p}'\gamma_\mu \hat{p}\gamma_\nu)$$

• Trick to handle phase space integrals: $\frac{d^3p'}{2E_{p'}} = \delta(p'^2)\Theta(E_{p'})d^4p'$

•
$$\rightarrow 4\pi m_p \hat{W}^q_{\mu\nu} = \frac{e_q^2}{2} (2\pi) \delta((p+q)^2) \Theta(E_{p'}) Tr(\hat{p}' \gamma_\mu \hat{p} \gamma_\nu)$$

DIS in quark parton model (2/2)

• Since $(p+q)^2 = 2(p \cdot q) - Q^2 = (Q^2/x)(\xi - x) \to m_p \hat{W}^q_{\mu\nu} = \frac{e_q^2}{4} \frac{x}{Q^2} \delta(\xi - x) Tr(\hat{p}'\gamma_\mu \hat{p}\gamma_\nu)$

- Projecting out Lorentz structures: $-g^{\mu\nu}m_p\hat{W}^q_{\mu\nu} = e_q^2x\delta(\xi x)$ and $p^{\mu}p^{\nu}\hat{W}^q_{\mu\nu} = 0$.
- Recalling similar projection for the proton hadronic tensor and the connection between $W_{\mu\nu}$ and $\hat{W}^q_{\mu\nu} \rightarrow F_1(x) = \frac{1}{2} \sum_{q} e_q^2 f_q(x)$ and $F_2(x) = \sum_{q} e_q^2 x f_q(x)$
- The Callan-Gross relation $F_2(x) = 2xF_1(x)$ is a consequence of spin 1/2 of partons \rightarrow the longitudinal structure function $F_L = 0 \rightarrow$ not true in full QCD.

• Partonic Born cross section:
$$\frac{d\hat{\sigma}_0}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left(\frac{y^2}{2} + \left(1 - y - \frac{x^2y^2m_p^2}{Q^2}\right)\right)$$

• DIS cross section in quark parton model:
$$\frac{d\sigma}{dxdQ^2} = \frac{d\hat{\sigma}_0}{dxdQ^2} \sum_q e_q^2 f_q(x)$$

• The parton model explains the Bjorken scaling of $d\sigma/d\hat{\sigma}$ since the structure functions $F_{1,2}(x)$ and PDFs $f_q(x)$ depend only on one variable $x \rightarrow$ not true in full QCD, see Lecture 2.

Quark PDFs of the proton (1/3)

It is natural to identify partons with quarks.
 *Note that massless current quarks ≠ massive quarks of the naive quark model.

• The proton structure function: $\frac{F_2^{ep}(x)}{x} = \left(\frac{2}{3}\right)^2 \left(u(x) + \bar{u}(x)\right) + \left(\frac{1}{3}\right)^2 \left(d(x) + \bar{d}(x)\right) + \left(\frac{1}{3}\right)^2 \left(s(x) + \bar{s}(x)\right)$

• The neutron structure function using isospin symmetry: $\frac{F_2^{en}(x)}{x} = \left(\frac{2}{3}\right)^2 \left(d(x) + \bar{d}(x)\right) + \left(\frac{1}{3}\right)^2 \left(u(x) + \bar{u}(x)\right) + \left(\frac{1}{3}\right)^2 \left(s(x) + \bar{s}(x)\right)$

• It is customary to split quark distributions into the valence and sea parts: $u(x) = u_{val}(x) + u_s(x)$ and $\bar{u}(x) = u_s(x)$.

• Sum rules for valence quarks:

$$\int_{0}^{1} dx[u(x) - \bar{u}(x)] = \int_{0}^{1} dx u_{val}(x) = 2$$

$$\int_{0}^{1} dx[d(x) - \bar{d}(x)] = \int_{0}^{1} dx d_{val}(x) = 1, \quad \int_{0}^{1} dx[s(x) - \bar{s}(x)] = 0$$

Valence quarks carry proton quantum numbers, sea quarks are radiated in pairs.

Quark PDFs of the proton (2/3)

 $g \rightarrow \overline{u}u$ • Ratio of proton and neutron structure functions: $\frac{1}{4} \le \frac{F_2^{en}(x)}{F_2^{ep}(x)} \le 4$

(x) + 10S(x)

At small x, see quarks dominate:
$$\frac{F_2^{en}(x)}{F_2^{ep}(x)} \to 1$$

At large x, $u_v(x) \gg d_v(x) \gg q_s(x)$: $\frac{F_2^{en}(x)}{F_2^{ep}(x)} \to \frac{1}{4}$

 Many more inequalities and approximate sum rules for electron-nucleon and neutrinonucleon scattering. Some examples:

Quark PDFs of the proton (3/3)

• Fraction of proton momentum carried by quarks: $\int_{0}^{1} dx x [u(x) + \bar{u}(x) + d(x) + \bar{d}(x) + s(x) + \bar{s}(x)] \approx \int_{0}^{1} dx x [u(x) + \bar{u}(x) + d(x) + \bar{d}(x)] = \epsilon_{u} + \epsilon_{d}$

• From experimentally measured structure functions: $\int_{0}^{1} dx F_{2}^{ep}(x) = \frac{4}{9}\epsilon_{u} + \frac{1}{9}\epsilon_{d} \approx 0.18, \quad \int_{0}^{1} dx F_{2}^{en}(x) = \frac{1}{9}\epsilon_{u} + \frac{4}{9}\epsilon_{d} \approx 0.12$

• $\rightarrow \epsilon_u = 0.36$, $\epsilon_d = 0.18 \rightarrow$ quarks carry about 50% of the proton momentum.

• The rest of the proton momentum is carried by neutral partons, which we identify with gluons.

• Modern picture of the valence, sea quark and gluon PDFs on the proton.

Color symmetry as a gauge group

- 1972, Fritzsch, Gell-Mann: non-observation of colored quarks (confinement)
 → promote color symmetry of hadron wave function to SU(3)_c gauge
 symmetry of the strong interactions.
- Degrees of freedom: quarks (flavor=u,d,s,c,t,b) in fundamental representation and gauge fields (gluons) in adjoint representation of SU(3)_c.
- Local gauge transformation (rotations in color space): $\psi'(x) = U(x)\psi(x) = e^{i\omega^a(x)T^a}\psi(x)$ and $A'_{\mu}(x) = U(x)(A_{\mu}(x) - \frac{i}{g}\partial_{\mu})U^{\dagger}(x)$, where $A_{\mu} = A^a_{\mu}T^a$
- Copying quantum electrodynamics, QED (Yang, Mills, 1954), the classical Lagrangian of QCD: $\mathscr{L}_{QCD} = \sum \bar{\psi}_f (i\partial_\mu + gT^a A^a_\mu m_f)\psi_f \frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu}$
- Gluon field tensor: $F^{a}_{\mu\nu} = \partial_{\mu}A^{f}_{\nu} \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu}, a = N^{2}_{c} 1 = 1,...,8$
- Generators T^a form the Lie algebra: $[T^a, T^a] = i f^{abc} T^c$ with antisymmetric structure constants f^{abc} .

• Color algebra:
$$Tr(T^aT^b) = T_F \delta^{ab}$$
, $\sum_a T^a T^a = C_F \hat{I}$, $\sum_{b,c} f^{abc} f^{dbc} = C_A \delta^{ab}$, where $T_F = \frac{1}{2}$, $C_F = \frac{4}{3}$, $C_A = 3 \rightarrow$ determine color factors in perturbative QCD.

Running QCD coupling

• Essential feature of QCD is self-interaction of gluons: $\mathscr{L}_{\text{QCD}} = \mathscr{L}_0 + gA^a_\mu \sum_f \bar{\psi}_f T^a A^a_\mu \psi_f - gf^{abc} (\partial_\mu A^a_\nu) A^{b\mu} A^{c\nu} - g^2 f^{eab} f^{ecd} A^a_\mu A^b_\nu A^{c\mu} A^{d\nu}$

• 1973, Gross, Wilczek, Politzer, asymptotic freedom: the QCD coupling constant $\alpha_s(Q^2) = g^2/(4\pi)$ decreases at large values of Q^2 or short distances,

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \frac{\alpha_s(\mu^2)}{12\pi}(33 - 2n_f)\log(Q^2/\mu^2)}$$

• Vacuum polarization loop in gluon propagator: screening due to quarks overcomed by anti-screening due to gluons:

$$\begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{$$

- \rightarrow explains Bjorken scaling for large Q^2 and predicts its violation.
- In the opposite limit of small Q^2 and large distances, $\alpha_s(Q^2)$ becomes large \rightarrow "infrared slavery" and confinement of quarks into color-singlet hadrons.

Summary: Foundations of QCD

- The quark model for hadron spectroscopy, Gell-Mann, Nobel Prize 1969
- Bjorken scaling in DIS, Friedman, Kendall, Taylor, Nobel Prize 1990
- Asymptotic freedom of QCD, Gross, Politzer, Wilczek, Nobel Prize 2004
- Discovery of J/ψ , Richter, Ting, Nobel Prize 1976
- Renormalization of Yang-Mills gauge theory, t' Hooft, Veltman, Nobel Prize 1999
- Spontaneous broken symmetry, Nambu, Kobayashi, Maskawa, Nobel prize 2008

In QCD as in a quantum field theory, the ability to describe high-energy scattering rests on 2 concepts:

- Renormalization: handles infinities in loop integrals and allows to sum all orders of perturbation theory, Tomonaga, Schwinger, Feynman, Nobel Prize 1965; t' Hooft, Veltman, Nobel Prize 1999; Wilson, Nobel Prize 1982
- Factorization: separation of short-distance matrix elements described by perturbative QCD from long-distance PDFs describing hadron structure, Collins, Soper, Sterman, 1987/89

Experimental confirmation of QCD (1/2)

- Scaling violations of the structure functions in *ep* deep inelastic scattering
- 1978, PETRA, Observation of 3-jet events in e^+e^- annihilation: evidence for gluons with the angular distribution consistent with spin-1 vector gluons.

Experimental confirmation of QCD (2/2)

• November 1974, "November revolution": discovery of J/ ψ meson and its exited states suggesting a new charm quark \rightarrow charmonium spectrum described using QCD potential models \rightarrow evidence of color charge interaction and acceptance of Standard Model.

• QCD predicts existence of exotic hadrons, which are not allowed in the quark model: XYZ tetraquarks (Belle, 2003; BES, 2013), pentaquarks (LHCb, 2015), glueball and hybrid mesons (candidates available, need confirmation).

QCD: a broad picture

- Simple QCD Lagrangian leads to a vast array of successes in explaining and predicting phenomena in low-energy and high-energy nuclear physics.
- It is active field of research with many open questions:

 Value
 Average

 Value
 Average

 Value
 Average

 Value
 Average

 Value
 Average

 Value
 Average

Structure of QCD vacuum, confinement, and origin of mass

Quark-gluon structure of proton and nuclei including spin and $k_{\rm T}$

QCD phase transitions, new regimes of strong interactions, quark-gluon plasma

- Focus of these lectures is collinear PDFs of the proton, nuclei and photon:
 - fundamental structure probed in high-energy scattering processes
 - initial condition for heavy-ion scattering
 - Standard Model precision studies and background for searches of new physics

Origin of scaling violations in QCD

- The parton model predicts exact Bjorken scaling of the DIS structure functions $F_{1,2}(x)$.
- In full QCD, the scaling is only approximate with logathmic dependence on the photon virtuality $q^2 = -Q^2$.
- Fundamental reason:
 - parton model: transverse momenta of partons are limited, $k_t \le \mu_0 \sim 1 \text{ GeV}$ _ QCD: quark and gluon k_t allowed to be large, $k_t \le \sqrt{Q^2}$
- Probability *w* to produce extra partons is large despite small coupling constant $\alpha_s(Q^2)$: $w \propto \frac{\alpha_s}{2\pi} \int^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} = \frac{\alpha_s}{2\pi} \ln Q^2 \sim 1$
- Leading Logarithmic Approximation (LLA):
- $F_{1,2}(x,Q^2) = \sum_{n=0}^{\infty} f_n(x) \left(\frac{\alpha_s}{2\pi} \ln Q^2\right)^n$
- Such logarithmic behavior is a general feature of QFT with dimensionless coupling constant \rightarrow the "virtual coat" of partons depends on the resolution Q^2 .

e', k'

 $\sum \gamma^*, q = k - k'$

q ۱

e, k

Parton ladder in LLA

• The axial gauge $A^+(x) = A^0(x) + A^3(x) = 0 \rightarrow$ only 2 physical gluon polarizations contribute \rightarrow no need to introduce ghosts+only ladder-type diagrams contribute:

Typical diagram for $\gamma^* p \; {\rm DIS}$

Examples of "non-parton" diagrams that do not contribute to LLA

 $\mu \mid p'$

- Leading order (LO) in α_s (Born term) \rightarrow
- We are interested in the structure functions $\sim |\mathcal{M}|^2 \rightarrow$ use cut diagram notation \rightarrow dashed lines show cut propagators on mass shell $\rightarrow 2\pi \delta_+(p'^2)$
- Direct calculation:

$$4\pi m_p \hat{W}_{\mu\nu}(\gamma^* q \to q) = \frac{N_c}{N_c} \frac{e_q^2}{2} (2\pi) \delta_+((p+q)^2) Tr(\hat{p}'\gamma_\mu \hat{p}\gamma_\nu) = \pi e_q^2 \frac{x}{Q^2} \delta(\xi - x) Tr(\hat{p}'\gamma_\mu \hat{p}\gamma_\nu)$$

 \to same as in the parton model.

p

Parton ladder: real gluon emission (1/2)

- Let us start adding corrections using a perturbation series in α_s , but keeping only $\log Q^2$ -enhanced terms \rightarrow LLA.
- Real gluon emission off initial quark:

$$4\pi m_p \hat{W}_{\mu\nu}(\gamma^* q \to qg) = \int \frac{d^4k}{(2\pi)^4} 2\pi \delta_+(p'^2) 2\pi \delta_+(k^2) C_F \frac{g_s^2 e_q^2}{2} \sum_{\text{pol}} \bar{u}(p) \hat{\epsilon} \frac{\hat{t}}{t^2} \gamma_\nu \hat{p}' \gamma_\mu \frac{\hat{t}}{t^2} \hat{\epsilon^*} u(p)$$

- Color factor for this diagram is $(1/N_c)Tr(T^aT^a) = C_F = 4/3$
- Sudakov decomposition of four-vectors in terms of light-cone vectors p and n: $l_{\mu} = \alpha p_{\mu} + \beta n_{\mu} + l_{\perp \mu}$, where $p^2 = n^2 = (l_{\perp} \cdot p) = (l_{\perp} \cdot n) = 0$
- Parton momenta: p = p, $q = -(x/\xi)p + n$, $k = (1 z)p + \beta n + \mathbf{k}_{\perp}$ Trace calculation: $\sum_{\text{pol}} \dots = Tr(\hat{p}'\gamma_{\mu}\hat{t}\hat{\epsilon}^{*}\hat{p}\hat{\epsilon}\hat{t}\gamma_{\nu}) \approx 2\mathbf{k}_{\perp}^{2}\frac{1}{1-z}\frac{1+z^{2}}{1-z}Tr(\hat{p}'\gamma_{\mu}\hat{p}\gamma_{\nu})$ Delta functions: $\delta_{+}(p'^{2}) = \delta((Q^{2}/x)(z\xi x)) = \frac{x}{zQ^{2}}\delta(\xi x/z)$,

Parton ladder: real gluon emission (2/2)

$$\delta_{+}(k^{2}) = \delta(2(p \cdot n)(1-z)\beta - \mathbf{k}_{\perp}^{2}) = \frac{1}{2(p \cdot n)(1-z)} \delta(\beta - \mathbf{k}_{\perp}^{2}/[2(p \cdot n)(1-z)])$$

• Loop integration: $d^{4}k = (p \cdot n)dzd\beta d^{2}\mathbf{k}_{\perp} = \pi(p \cdot n)dzd\beta d\mathbf{k}_{\perp}^{2}$

• Putting everything together:

$$4\pi m_p \hat{W}_{\mu\nu}(\gamma^* q \to qg) = \int_x^1 \frac{dz}{z} \int_{m^2}^{Q^2} \frac{d\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2} \delta(\xi - x/z) \frac{\alpha_s}{2\pi} P_{qq}(z) \frac{x}{Q^2} \pi e_q^2 Tr(\hat{p}' \gamma_{\mu} \hat{p} \gamma_{\nu})$$

• Integration over \mathbf{k}_{\perp}^2 gives: $\int_{m^2}^{Q^2} \frac{d\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2} = \log(Q^2/m^2)$, where m^2 regulates small- \mathbf{k}_{\perp}

divergence corresponding to collinear gluon emission.

• $P_{qq}(z) = C_F \frac{1+z^2}{1-z}$ is the quark-quark splitting function ~ probability for a quark to emit quark a with momentum fraction z and a gluon with momentum fraction 1-z.

• Diverges at $z \rightarrow 1$, which is unphysical \rightarrow regulated by virtual correction to the quark propagator.

Z

Parton ladder: gluon loop

• In addition to real gluon emission, ladder-type graphs include virtual corrections \rightarrow lead to ultraviolet (UV) divergences \rightarrow handled by renormalization of quark propagator.

- Instead of an explicit calculation, notice that they are concentrated at $z = 1 \rightarrow$ of the form $\delta(1 z)$.
- Total probability (Born+ α_s correction) of finding a quark inside a quark is $1 \rightarrow \int_0^1 dz P_{qq}(z) = 0.$
- Virtual corrections regularize $P_{qq}(z)$ at $z = 1 \rightarrow$ so-called "+ prescription" $\int_{0}^{1} dz \frac{f(x)}{(1-z)_{+}} = \int_{0}^{1} dz \frac{f(z) - f(1)}{1-z}$
- These conditions fix the numerical coefficient in front of $\delta(1-z)$. Final result for quark-quark splitting function: $P_{qq}(z) = C_F \frac{1+z^2}{(1-z)_+} + 2\delta(1-z)$.

Gluon-initiated parton ladder

- A parton ladder can also be initiated by gluons.
- Contribution to the hadronic tensor at parton level:

$$4\pi m_p \hat{W}_{\mu\nu}(\gamma^* g \to qq) = \int \frac{d^4 k}{(2\pi)^4} 2\pi \delta_+(p'^2) 2\pi \delta_+(k^2) T_R g_s^2 e_q^2 \frac{1}{2} \sum_{\text{pol}} \frac{1}{t^4} Tr(\hat{p}' \gamma_\mu \hat{t} \hat{\epsilon} \hat{k} \hat{\epsilon^*} \hat{t} \gamma_\nu)$$

- Color factor for this diagram is $1/(N_c^2 1)Tr(T^aT^a) = 1/2 = T_R$
- Using Sudakov decomposition, after some algebra:

$$4\pi m_p \hat{W}_{\mu\nu}(\gamma^* g \to qq) = \int_x^1 \frac{dz}{z} \int_{m^2}^{Q^2} \frac{d\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2} \delta(\xi - x/z) \frac{\alpha_s}{2\pi} P_{qg}(z) \frac{x}{Q^2} \pi e_q^2 Tr(\hat{p}' \gamma_\mu \hat{p} \gamma_\nu) \qquad (1-z)$$

• $P_{qg}(z) = T_R(z^2 + (1 - z)^2)$ is the gluon-quark splitting function ~ probability for a gluon to emit a quark a with momentum fraction z and a quark with momentum fraction 1 - z.

1-z

Parton ladder: more rungs and splittings

• One can add more rungs to the parton ladder and combine different types of parton-parton splittings.

• Nested integrals \rightarrow to build up $\log Q^2$ contribution, transverse momenta should be strongly ordered: $-k_{1\perp}^2 \ll -k_{2\perp}^2 \ll \cdots \ll -k_{n\perp}^2 \ll Q^2$

• All parton splitting functions to one-loop accuracy:

q١

5

3

2

Symmetries of splitting functions

• Exchange decay products $z \rightarrow 1 - z$ (for z < 1):

- Quark-gluon symmetry (super-symmetry relation):
- $P_{qq}(z)/C_F + P_{gq}(z)/C_F = P_{qg}(z)/T_R + P_{gg}(z)/N_c \rightarrow \text{it sufficient to know quantum electrodynamics to restore the structure of the gluon self-interaction!$

Q^2 -dependent PDFs (1/2)

- We calculated $\mathcal{O}(\alpha_s^0)$ and $\mathcal{O}(\alpha_s^1)$ contributions to parton hadronic tensor $\hat{W}_{\mu\nu}$ keeping only terms proportional to $\log Q^2$ (LLA).
- Recalling the connection between the parton and proton hadronic tensors $W_{\mu\nu} = \sum_{i=q,g} \int_{0}^{1} \frac{d\xi}{\xi} \hat{W}_{\mu\nu} f_{i}(\xi) \rightarrow \text{DIS cross section on proton in LLA:}$ $\frac{d\sigma}{dxdQ^{2}} = \frac{d\hat{\sigma}_{0}}{dxdQ^{2}} \sum_{q} e_{q}^{2} \left(f_{q}(x) + \frac{\alpha_{s}}{2\pi} \log(Q^{2}/m^{2}) \int_{x}^{1} \frac{dz}{z} \left[P_{qq}(z)f_{q}(x/z) + P_{qg}(z)f_{g}(x/z) \right] \right) + \dots$
- Absorb $\log(Q^2/m^2)$ into definition of PDFs: $f_q(x, Q^2) = f_q(x) + \frac{\alpha_s}{2\pi} \log(Q^2/m^2) \int_x^1 \frac{dz}{z} \left[P_{qq}(z) f_q(x/z) + P_{qg}(z) f_g(x/z) \right] \dots$
- PDFs depend on Q^2 and obey the integro-differential evolution equations, Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations, 1972-1977 \rightarrow renormalization group equations for PDFs:

$$Q^{2} \frac{\partial}{\partial Q^{2}} \begin{pmatrix} f_{q}(x,Q^{2}) \\ f_{g}(x,Q^{2}) \end{pmatrix} = \frac{\alpha_{s}}{2\pi} \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{q}(Q^{2}) \\ f_{g}(Q^{2}) \end{pmatrix} \qquad P_{ij} \otimes f_{j}(Q^{2}) \equiv \int_{x}^{1} \frac{dz}{z} P_{ij}(z) f_{j}\left(x/z,Q^{2}\right) dz$$

Q²-dependent PDFs (2/2)

• In QCD due to parton emission, the partonic content of hadrons (proton, pion, nucleus, real photon,...) depends on the photon virtuality Q^2 .

Factorization theorem (1/4)

• We derived that in LLA $\frac{d\sigma}{dxdQ^2} = \frac{d\hat{\sigma}_0}{dxdQ^2} \sum_q e_q^2 f_q(x,Q^2) \rightarrow$ the cross section of DIS on proton is a product of the LO $\gamma^*q \rightarrow q$ cross section and the quark PDF $f_q(Q^2)$ absorbing all collinear logarithmic divergences.

• It is a particular example the QCD factorization theorem, which is valid beyond LLA and order-by-order in perturbative QCD:

$$F_2(x, Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 d\xi C_i\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) f_i(\xi, \mu^2)$$

• Coefficient functions C_i are process-specific, but do not depend on the target \rightarrow calculated in perturbation series taking quarks and gluon as a target.

• PDFs $f_i(\xi, \mu^2)$ are process-independent (universal), but depend on the target.

- \bullet Factorization scale μ separates (factorizes) the perturbative and non-perturbative effects.
- $F_2(x, Q^2)$ does not depend on μ at given order of pQCD \rightarrow guaranteed by the DGLAP equations.

Factorization theorem (2/4)

- To explain factorization concepts, consider DIS on a quark target.
- Expand C_i and f_i as a series in powers of α_s :
- $f_i = f_i^{(0)} + f_i^{(1)} + \dots$
- $C_i = C_i^{(0)} + C_i^{(1)} + \dots$
- $\to F_{2,i} = C_i^{(0)} \otimes f_i^{(0)} + C_i^{(0)} \otimes f_i^{(1)} + C_i^{(1)} \otimes f_i^{(0)} \dots$
- At leading order, $f_{i/i}^{(0)}(\xi) = \delta(1-\xi)$, $F_{2,i}(x) = e_q^2 \delta(1-x) \rightarrow C_q^{(0)}(x) = e_q^2 \delta(1-x)$
- To one-loop accuracy and taking into account the real gluon emission, virtual corrections and non-logarithmic terms:

$$\frac{F_{2,i}^{(1)}}{x} = e_q^2 \frac{\alpha_s}{2\pi} C_F \left[\int \frac{dk_\perp^2}{k_\perp^2} \left(\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right) + \left(\frac{1+x^2}{1-x} \left(\ln\frac{1-x}{x} - \frac{3}{2} \right) + \frac{1}{4}(9+5x) \right)_+ \right]$$

- From factorization formula: $F_{2,i}^{(1)} = e_q^2 x f_{i/i}^{(1)}(x) + C_i^{(1)}(x)$
- $\rightarrow f_{i/i}^{(1)}(x,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \int_{m^2}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} P_{qq}(x) \rightarrow \text{gives the } P_{qq} \text{ splitting function and the}$ NLO quark coefficient function $C_q(x) = C_F\left(\frac{1+x^2}{1-x}\left(\ln\frac{1-x}{x}-\frac{3}{2}\right)+\frac{1}{4}(9+5x)\right)$

Factorization theorem (3/4)

• Expressions for the splitting functions P_{ij} at NLO in 1980s, NNLO in 2000s, and N3LO is still work in progress (approx. solutions and special cases).

- Different choices to group terms into the coefficient functions and PDFs are called factorization schemes.
- Modified minimal subtraction scheme, $\overline{\rm MS}$ scheme: absorb only the collinear-divergent term (+ universal constant from dim. reg.) in PDFs.
- Another frequently option is the DIS-scheme \rightarrow absorb everything in PDFs:
- $xf_{i/i}^{(1)}(x,Q^2)_{\text{DIS}} = F_{2,i}^{(1)}/e_q^2 \rightarrow$
- $C_{q,\bar{q}}(x)_{\text{DIS}} = e_q^2 \delta(1-x)$
- $C_g(x)_{\text{DIS}} = 0$

• \rightarrow simple parton model form of the DIS cross section and structure functions.

Factorization theorem (4/4)

- One usually associates the factorization scale μ with hard scale of the process: $\mu = c\sqrt{Q^2} = (0.5 2)\sqrt{Q^2}$ (c = 1 in our DIS calculations).
- Small variations of *c* result in effects suppressed by additional power of α_s : $\frac{d}{d \log \mu^2} \sum_{n=0}^{N} \alpha_s(\mu^2)^n \sum_i C_i^{(n)} \otimes f_i^{(n)}(\mu^2) \sim \mathcal{O}(\alpha_s^N) \rightarrow \text{used to estimate missing higher}$ order corrections (MHOU). $\underbrace{\mathsf{ZEUS}}_{\mathsf{F}_{16}} = \frac{14 < \mathsf{E}_{\mathsf{T}}^{\mathsf{left}} < 17 \, \mathsf{GeV}}{17 < \mathsf{E}_{\mathsf{T}}^{\mathsf{left}} < 25 \, \mathsf{GeV}}$
 - Example: dijet photoproduction at HERA

Operator definition of PDFs (1/3)

- One can define PDFs as matrix elements of QCD operators separated by lightcone distances.
- Below we consider the LO (Born contribution) of one quark flavor.

• Hadronic tensor:
$$m_p W_{\mu\nu} = \frac{1}{4\pi} \sum_X (2\pi)^4 \delta^4 (p + q - p_X) \langle p | J_\mu(0) | X \rangle \langle X | J_\nu(0) | p \rangle$$

• Use $(2\pi)^4 \delta^4 (p + q - p_X) = \int d^4 x e^{ix(p+q-p_X)}$, translation $\langle p | J_\mu(0) | X \rangle = e^{-ix(p-p_X)} \langle p | J_\mu(x) | X \rangle$
and completeness of states $X \to m_p W_{\mu\nu} = \frac{1}{4\pi} \int dx^{iqx} \langle p | J_\mu(x) J_\nu(0) | p \rangle$

• Forward Compton scattering amplitude: $T_{\mu\nu} = i \left[dx^{iqx} \langle p | T\{J_{\mu}(x)J_{\nu}(0)\} | p \rangle \right]$

- Optical theorem $W_{\mu\nu} = 2\Im m T_{\mu\nu}$
- Time-ordered product of quark e.m. currents: $T\{J_{\mu}(x)J_{\nu}(0)\} = e_{q}^{2}\bar{\psi}(x)\gamma_{\mu}S_{F}(x)\gamma_{\nu}\psi(0) + \dots = \int \frac{d^{4}p'}{(2\pi)^{4}}e^{-p'x}e_{q}^{2}\bar{\psi}(x)\gamma_{\mu}S_{F}(p')\gamma_{\nu}\psi(0) + \dots$ • $S_{F}(p') = \frac{\hat{p'}}{p'^{2} + i\epsilon}$ is the massless quark propagator.

Operator definition of PDFs (2/3)

• Changing variables p' = q + k and taking the imaginary part: $m_p W_{\mu\nu} = \frac{e_q^2}{2} \int d^4k \int \frac{d^4x}{(2\pi)^4} e^{-ixk} \langle p | \bar{\psi}(x) \gamma_{\mu}(\hat{k} + \hat{q}) \gamma_{\nu} \psi(0) | p \rangle \delta((k+q)^2)$

• Introduce the quark correlator $\hat{\Phi}^{q}_{\alpha\beta}(k) = \int \frac{d^4x}{(2\pi)^4} e^{-ixk} \langle p | \bar{\psi}_{\beta}(x) \psi_{\alpha}(0) | p \rangle$

$$\bullet \to m_p W_{\mu\nu} = \frac{e_q^2}{2} \int d^4k \delta((k+q)^2) Tr\{\gamma_\mu(\hat{k}+\hat{q})\gamma_\nu\hat{\Phi}^q(k)\}$$

2

• We showed before that $\delta((k+q)^2) = x/Q^2\delta(\xi - x)$. Expressing vectors in Sudakov basis: q = -xp + n and $k = \xi p \rightarrow q + k = n + \dots$

- \rightarrow in the expansion of $\hat{\Phi}^{q}_{\alpha\beta}(k)$ in terms of independent Lorentz vectors, one can keep only $\hat{\Phi}^{q}_{\alpha\beta}(k) \propto \hat{p} \rightarrow \hat{\Phi}^{q}_{\alpha\beta}(k) = \frac{\hat{p}}{4(p \cdot n)} \int \frac{d^{4}x}{(2\pi)^{4}} e^{-ikx} \langle p | \bar{\psi}(x) \hat{n} \psi(o) | p \rangle$
- In d^4k integration, the component along p is fixed by the delta-function, while $\int dk^- d^2 \mathbf{k}_{\perp} e^{-ixk} = (2\pi)^3 \delta(x^+) \delta^2(\mathbf{x}_{\perp})$

Operator definition of PDFs (3/3)

- Putting all factors together and using $\int dx^+ d^2 \mathbf{x}_\perp \delta(x^+) \delta^2(\mathbf{x}_\perp) = 1:$ $m_p W_{\mu\nu} = \frac{e_q^2}{4} \left(x/Q^2 \right) Tr\{\gamma_\mu \hat{n} \gamma_\nu \hat{p}\} \frac{p^+}{2(p \cdot n)} \int \frac{dx^-}{2\pi} e^{-ixx^- p^+} \langle p | \bar{\psi}(x) \hat{n} \psi(0) | p \rangle_{|x^+ = \mathbf{x}_\perp = 0}$
- Recalling that $F_2(x, Q^2)/x = -g^{\mu\nu}m_pW_{\mu\nu} + \dots$ and summing over quarks:

$$F_2(x,Q^2)/x = \sum_q e_q^2 \frac{p^+}{2(p\cdot n)} \int \frac{dz^-}{2\pi} e^{-ixz^-p^+} \langle p \,|\, \bar{\psi}(x)\hat{n}\psi(0) \,|\, p \rangle_{z^+ = \mathbf{z}_\perp = 0}$$

• Comparing with the LO expression $F_2(x, Q^2)/x = \sum e_q^2 f_q(x, Q^2)$

•
$$\rightarrow f_q(x, Q^2) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{-ixz^-p^+} \langle p | \bar{\psi}(x) \gamma^+ \psi(0) | p \rangle_{z^+ = \mathbf{Z}_\perp = 0}$$

• The quark distribution is given by a forward matrix element of two quark fields separated by the light-cone distance z^- .

• Note*: No need to introduce gauge link in $A^+(x) = 0$ gauge.

Χ