Vector mesons and diffraction in the color-glass condensate

 $Outline:$ 1 Colorglass condensate approach to gluon saturation 2. Recap of diffraction - Probing protons and nuclei with diffractive processes - Why is this interesting $6r$ gluon saturation? 3. Diffra**cti**ve vector meson production - Why vector mesuns? ⁴¹ Theoretical models for mesons - Heavy mesons: nonrelativistic QLD $-L$ ight mesons! twist expansion

Gluon saturation Gluon density increases rapidly with decreasing x increasing energy <u>ک</u> $\mathcal{S} \sim$ ($\%$ Increase too rapid \Rightarrow violation of unitarity $log X$ has to be tamed by nonlinear effects of QCD gluon recombination gluon saturation Naturally taken into account in the dipole picture Target as ^a classical color field = $color$ -glass condensate χ Interaction described in terms of $W_i|_{\text{S}\rho\eta}$ lines \mathcal{C} $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 &$

Diffraction

What is diffraction?

 $HERA+er_{P}$ -collider ~10% of events diffractive

How can we understand the difference between diffractive and non-diffractive processes?

Compare the following: $\frac{7}{1}$ \bigcup $\begin{array}{cc} F_{\text{final}} & q_{\overline{1}} & \text{color} \end{array}$ octet $\begin{array}{cc} \text{Consider the final } & q_{\overline{1}} & \text{in} \ \text{Conorder} & \text{the final } & q_{\overline{1}} & \text{in} \end{array}$ Confinement all measured final particles have to be
color singlets! neutralization of color between $\frac{1}{2}$ and proton final particle production between $\frac{1}{2}$ and $\frac{1}{2}$ remnant in the final $\frac{1}{2}$ final particles $\frac{1}{2}$ $\frac{1}{2}$ and state of soft radiation $p^* \rightarrow Y$ well separated in => lots of soft radiation between the finalstate \vert =) rapidity gap Δ y rapidity gap filled by soft particles

 $J \uparrow$ => gq and pooton remnant

Diffraction: color neutral interaction with the target

Diffractive events need at least two gluons exchanged with the target ^c ^f non diffractive one gluon is enough more sensitive to gluon density more sensitive to gluon saturation Collinear Small factorization Inclusive On xg yay NCTX Diffractive GN xglx.ae NCrix g gluon PDF

^N dipole amplitude

Comparing inclusive and diffractive events is interesting to understand saturation: Ws dilute limit \overline{z} no satunation e b *lack* - disk l_{in}/t Here W is the e^{x}

Variables é \mathbb{R} ^P If pA $IP =$ ["] p oneron" (color-neutral interaction not a real particle!) $X = d$ iffractive final state p^* = p raton remnant (can stay as a proton or dissociate into other particles) Q^2 = photon virtuality M_X^2 = invariant mass of the final state $\epsilon = (p_r - p_x)^2 = m$ omentur exchange w^{2} center-of-mass energy for $\delta^{*}P$ system

$$
x_{IP} = \frac{Q^{2} + M_{x}^{2} - t}{W^{2} + Q^{2} + m_{P}^{2}} = |ongitudina|
$$
momentum fraction
Camed by the pomeron
Canalogones to Bjorken x)

^A lot of variables to study the target

A comparison

- · Inclusive DIS: clesaribed in terms of structure functions $P(x,y^2)$
- . Diffractive DIS; in terms of diffractive structure functions $F(x_{p,Q}^2, t, M_x^2)$

$$
t-dependence especially inverse im_j ?
$$

 $t = \Delta_i^2$, $iM \sim \int d^2b_i e^{-i\Delta_i^*b_i}N(r_i, b_i)$

transverse momentu Fourier $transf_{e-}$ Δ_{\perp} impact parameter

$$
B_{7}
$$
 measuresuring Δ_{L} we gain information about
the impact-parameter dependent of the distribution distribution

Coherent and incoherent diffraction

How can we describe this theoretically? Good Walker picture

Total diffractive production $S \sim \frac{2}{\chi} \frac{1}{\chi} \frac{1}{\chi}$ x pl $x \sim p$ (p) = c_p $|mu|^2$ $\sigma_{\text{coh}} \sim$ $\sigma_{\text{ph}}/\mu_{\text{ph}}$ $\sigma_{\text{ph}}/\mu_{\text{ph}}$ σ_{ph} \sim $\sigma_{\text{ph}}/\mu_{\text{ph}}$ Incoherent production: $\sigma_{nch} = \sigma - \sigma_{ch} \sim c_p |\mu|^2 / \rho$ - $|\epsilon_p |\mu| / \rho$

Small x: elements (p) (p) can be written as averages over proton's color configurations ζ_{ρ} \circ ζ_{ρ} \geq ζ \circ \circ \sim (11) 16m81 $\sigma_{incoh} \sim$ (11^o) - $\left(\sqrt{10^{2}}\right)^{-2}$ We get the following interpretation: $\sigma_{c_0\zeta}$: Probes average interaction with the target incoh! Probes fluctuations of the interaction with the target ("variance" of the interaction

Coherent:
$$
tan get size R_p \sim \frac{1}{4\epsilon_{oh}}
$$

 $\overline{1}$

mcoherent: Thethethion length scale
$$
R_{fhc} \sim \frac{L}{\Delta t_{bncoh}}
$$

 R_{ρ} $\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$ R_{fhc}

Diffractive vector meson production in DIS Consider exclusive single-particle production: - Single particle \rightarrow diffractive! σ^{π} + $\rho \rightarrow V$ + ρ

- Photons are vector particles: $J^{PC} = I^{-1}$
- =) dominant exclusive particle production: vector mesons - No exchange of quantum mumbers (color spin) with the target (also known as pomeron exchange) - Production of other particles would require an exchange of orbital angular momentum
- => Suppression Grequires non-zero mondatum transfer t)

EXAMPLE: **Exclusive** problem of a pseudosak-
parallel
$$
(J^{PC}=0^{-+})
$$

C parity flip odderon exchange Suppressed compared to vector mesons

Also: in DIS dominant contribution from vector mesons with
\n
$$
27 \text{ of } the \text{ same plane; } c_{1}9.
$$

\n $\omega = \frac{u\overline{u} + d\overline{a}}{12}$ $\rho^{\circ} = \frac{u\overline{u} - d\overline{a}}{12}$ $\Delta = 55$ $\sqrt{4} = c\overline{c}$ $\Sigma = 6\overline{6}$
\nCalsu higher-energy states)
\nWe will focus on these form now on.

Vector meson decay Decays of heavy vector mesons have some interesting properties ¹ Decay width can be very narrow e.g compared to pseudoscalas cc Mz 30 Mev ^r 4 ⁹⁰ Kev ⁶⁵ ^P 2s ⁷¹⁰ MeV ^T ^F ¹⁵ ⁵⁵⁰ Kev such particles also have relatively common electromagnetic decays 2 Higher order states Decay width suddenly becomes large E F 4625 300kV T 4137770 30M bi p 16251 30kV IGS zokeV ^T Flush 20mL How can we understand these properties Let's consider the lowestorder diagrams for the decay

Passible only if $M_{\nu} > 2M_{h}$ f_{c} = 2M_D = 3740 MeV $\frac{1}{x}$ \Rightarrow light vector mesons,

$$
\frac{\varphi(3770), \Upsilon(4s),}{\sqrt{955}}
$$

$$
M_{dd} = \rho r_{ab} / \rho_{cd}
$$
\n
$$
= \rho r_{ab} / \rho_{cd}
$$

 $R_{\alpha\uparrow\rho}$ (neglecting $V\rightarrow h\bar{h}$) $\frac{V\rightarrow l^{+}l^{-}}{QCD \text{ decays}} \sim \frac{\Gamma(V\rightarrow l^{+}l^{-})}{\Gamma(V\rightarrow g_{9})} \sim \frac{(\frac{\alpha_{e}}{2\pi})^{2}}{(\frac{\alpha_{s}}{2\pi})^{3}} \sim 4\%$ E xperiment: $1/\psi$ 26% $\mathcal{L}(15): \sim 2.5\%$ Most common QED decay $V \rightarrow \tau^* \rightarrow \ell^+ \ell^-$ Frank Extremely clean: only a dilepton pain in the detectors! F_{ν} higher quarkonia (412s), Γ (25)...) decays like $4(25) \rightarrow J/\psi$ tarything also $p_{\omega} s_j$ ble \rightarrow experimental signal more complicated

Meson wave function

Formation (or decay) of the vector meson is nonperturbative

- To describe it expand the state in terms of partonic
	- IV) = $\int d\zeta_{\bar{q}}$ $\int \psi_{\bar{q}}(\zeta_{\bar{q}}-\zeta_{\bar{q}}) + \int d\zeta_{\bar{q}}(\zeta_{\bar{q}}-\zeta_{\bar{q}}) + \psi_{\bar{q}}(\zeta_{\bar{q}}-\zeta_{\bar{q}}) + \psi_{\bar{q}}(\zeta_{\bar{q}}-\zeta_{\bar{q}})$ $d[n]$ = phase space for Fock state n
	- 4^{n} = nonperturbative wave function for Fock state n

How do we deal with 4^{n} ?

Heavy (vector) mesons

Focus on quarkonia states $c\bar{z}:z_1,\sqrt[4]{\psi}$, χ_{c} , h_{c} , z_2 (25), $\psi(2s)$,... $45: 26, 11, 16, h_0, 26(25), 11(25)$ $vearrow$ of the ruach/antiquark Quark mass large, Mr 2 2mg \Rightarrow leinetic crengy smed \Rightarrow nonrelativistic system! (vss1) We can use nonrelativistic QCI) (NRQCI) to

describe the ystems.

 $NROCD$:

• expansion in the Celaéile) velocity
$$
v
$$
 and $\alpha_s \sim v$

· write particles in terms of different spin and
color states spectroscopic notation for the spin and orbitz colon states spectroscopic notation $6r$ the spin and orbital
Example: 1^{argul} nomentum of the 99 pair $\int^{a_{n}}$ gular momentum of the \overline{q} pain Λ (2λ) Γ

$$
10/4=O(\nu^{\circ})|{}^{3}S_{1}^{[1]})+O(\nu)|{}^{3}P_{1}^{[8]}\gamma+O(\nu^{3})|{}^{1}S_{0}^{[8]}\gamma
$$

+ $O(\nu^{2})|{}^{3}D_{1}^{[1]}\rangle+...+{}^{5}{}^{6}{}^{6}{}^{th}$
10¹⁰

· describe particles in terms of universal long-distance matrix elements (LDMEs) $Exemple$ For $\sqrt{\psi}$ 99 Wave function $|\psi(\overline{r}z_0)|^2 = \frac{1}{N_c} \left\langle \mathcal{O}_1(^{3}S_1) \right\rangle_{N_c} \qquad \mathcal{O}_1(^{3}S_1) = \psi^{\dagger} \sigma^{\dagger} \chi \chi^{\dagger} \sigma^{\dagger} \psi$ Leading order in ν and α_S : only one universal nonpertabative constant: extremely simple! - Can be extracted from e.g. the decay width $V \rightarrow \ell^{\dagger} \ell^-$ (for vector mesons)

Fours on LO wave function
$$
\theta
$$
 if (r, z) .
\nF success on LO wave function between 97
\n $z = P_{4}/p_{5}$
\n $z =$

In practice the distoibution amplitudes also depend on Q^2 $\qquad \qquad \beta(z) \rightarrow \beta(z,\alpha^2)$ Scale dependence due to renormativation of the quark fields. · Evolution in Q^2 given by the ERBL equation $Gemalogous$ to $DGLAP$): $\frac{\partial}{\partial l_{o_9}Q^2}$ $\phi(3, \alpha^2) = \frac{\alpha_r G}{2\pi} \int_0^l dz' K(z', z) \phi(z, \alpha^2)$ Perturbative Q^2 -dependence, only need an initial condition Intuitive interpretation we integrate are the moments of the 2π pair until a^2 , a^2 a^2 Γ fourier transform of 4π $(2, r_1)$ $\left(\frac{\partial}{\partial s}\right)^{2} \sim \left(\frac{\partial^{2}k_{\perp}}{\partial s^{2}}\right)^{2} \left(\frac{\partial}{\partial s}\right)^{2}$ Asymptotic forms Q^{2} = ∞ : $\mathcal{S}(3,0^{2}) \rightarrow 62(1,3)$ In this limit only nonperturbative constant is $f(x)$ can be determined from the decay width $\frac{\cancel{1}}{2}$ $V \ni \&i^{\dagger} \&j^{\dagger}$

$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{perturbative, } \text{con} \text{ be calculated}}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{1. } \text{Cylt} \text{ to the model } using \text{ CGC}}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{1. } \text{Cylt} \text{ to the model } using \text{ CGC}}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{1. } \text{Cylt} \text{ to the model } using \text{ CGC}}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt} \text{ to the model } using \text{ CGC}
$$
\n
$$
\psi^{\gamma^{*} \rightarrow \frac{1}{2} \text{, } \text{Cylt}
$$

Saturation effects in exclusive production Measuring saturation effects need momentum scale ^m Qj If ^m area nonperturbative mass kind of ^a sweet spot Large enough to be perturbative Small enough for hopefully seeing saturation step ^p ^r Pb Pb days dispo yq xx̅iÉÉ ̅ data data linear fit linear fit dogw dog Treasing Treasing Proton targets Pb targets Dependence completely linear Deviations from linear no saturation saturation https://arxiv.org/pdf/2207.03712 https://arxiv.org/pdf/2312.04194

Hot topic: Is this saturation or something else?