
Pythia 8: Physics and usage
Saariselkä Midsummer School 2024

Ilkka Helenius

June 27, 2024

Preparations

• Download the Docker image:

$ docker pull hepstore/rivet-pythia

• Start the container and set up the current directory as a “host” directory

(This way you can open andmodify files as they would be local files):

$ docker run -v $PWD:/host -it --rm hepstore/rivet-pythia

• Copy an example to your /host folder:

$ cd /host
$ cp ../usr/local/share/Pythia8/examples/main01.cc .
$ cp ../usr/local/share/Pythia8/examples/Makefile* .

• Compile and run the example:

$ make main01 && ./main01
1

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Physics modelled within Pythia 8 event generator

Classify event generation in terms of

“hardness”

1. Hard Process (here t̄t)

2. Resonance decays (t,Z, . . .)

3. Matching, Merging and

matrix-element corrections

4. Multiparton interactions

5. Parton showers:

ISR, FSR, QED,Weak

6. Hadronization, Beam remnants

7. Decays, Rescattering

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 2

Outline

Lecture 1: ProcessLevel

• History of Pythia

• Monte Carlo techniques

• Hard-process sampling

Lecture 2: PartonLevel

• Multiparton interactions

• Parton showers

Lecture 3: HadronLevel

• Hadronization

• Beam configurations

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon

Antibaryon

· Heavy Flavour

[figure by P. Skands] 3

Outline

Lecture 1: ProcessLevel

• History of Pythia

• Monte Carlo techniques

• Hard-process sampling

MPIMPI

dσ̂0

·
·

·
·

··

Meson
Baryon
Antibaryon

· Heavy Flavour

[figure by P. Skands] 3

History of Pythia

…a local woman, the Pythia, would sit on a tripod and inhale the vapours. Her

more-or-less incoherent screamswould be interpreted by the local priesthood, and

often presented as poems in perfect hexameter. Some of these became famous for

their ambiguity, and the disastrous consequences of amisinterpretation.

Similarly the PYTHIA code is intended to provide

youwith answers tomany questions youmay have

about high-energy collisions, but it is then up to

you to use sane judgement when you interpret

these answers.

4

Long history of Pythia (in short)

The PYTHIA Event Generator: Past, Present and Future by Torbjörn Sjöstrand,

Comput. Phys. Comm. 246 (2020) 106910 arXiv:1907.09874v1 [hep-ph]

• 1978: Jetset string hadronization

• 1982: Pythia for p-p collisions

• 1984: Final-state parton shower

• 1985: Initial-state parton shower

• 1985: Multi-parton interactions

• 1997: Jetset merged into Pythia 6

• 2005: Pythia 8.1 in C++

• 2014: Pythia 8.2 (drop 6.4 support)

• 2019: Pythia 8.3 with C++11

The string e↵ect – 2

String e↵ect (JADE, 1980) ⇡ coherence in nonperturbative context

Further numerous and detailed tests at LEP disfavour independent
fragmentation, so nowadays of historical interest only.

Torbjörn Sjöstrand PPP 7: Hadronization slide 30/47

5

Long history of Pythia (in short)

The PYTHIA Event Generator: Past, Present and Future by Torbjörn Sjöstrand,

Comput. Phys. Comm. 246 (2020) 106910 arXiv:1907.09874v1 [hep-ph]

• 1978: Jetset string hadronization

• 1982: Pythia for p-p collisions

• 1984: Final-state parton shower

• 1985: Initial-state parton shower

• 1985: Multi-parton interactions

• 1997: Jetset merged into Pythia 6

• 2005: Pythia 8.1 in C++

• 2014: Pythia 8.2 (drop 6.4 support)

• 2019: Pythia 8.3 with C++11

Indirect evidence for multiparton interactions – 1

without MPI:

Torbjörn Sjöstrand PPP 6: Multiparton interactions and MB/UE slide 11/56

5

Long history of Pythia (in short)

The PYTHIA Event Generator: Past, Present and Future by Torbjörn Sjöstrand,

Comput. Phys. Comm. 246 (2020) 106910 arXiv:1907.09874v1 [hep-ph]

• 1978: Jetset string hadronization

• 1982: Pythia for p-p collisions

• 1984: Final-state parton shower

• 1985: Initial-state parton shower

• 1985: Multi-parton interactions

• 1997: Jetset merged into Pythia 6

• 2005: Pythia 8.1 in C++

• 2014: Pythia 8.2 (drop 6.4 support)

• 2019: Pythia 8.3 with C++11

Indirect evidence for multiparton interactions – 2

with MPI included:

Torbjörn Sjöstrand PPP 6: Multiparton interactions and MB/UE slide 12/56

5

Long history of Pythia (in short)

The PYTHIA Event Generator: Past, Present and Future by Torbjörn Sjöstrand,

Comput. Phys. Comm. 246 (2020) 106910 arXiv:1907.09874v1 [hep-ph]

• 1978: Jetset string hadronization

• 1982: Pythia for p-p collisions

• 1984: Final-state parton shower

• 1985: Initial-state parton shower

• 1985: Multi-parton interactions

• 1997: Jetset merged into Pythia 6

• 2005: Pythia 8.1 in C++

• 2014: Pythia 8.2 (drop 6.4 support)

• 2019: Pythia 8.3 with C++11 Figure 2: Number of lines in the program codes as a function of time. Snapshots in time
are connected by straight lines. Thin lines around 1995 mark the merger of Pythia and
Jetset.

lines, while projections for the 8.3 release hover around 250 000 ones. A big jump from the
current 8.2 size is explained by the inclusion of the Vincia and Dire shower codes. This
evolution is shown in Fig. 2. It is largely based on what the wc command gives, which
include both comment and blank lines, and is only for the core program, which for the
C++ versions are the include/Pythia8 and src subdirectories. The actual Pythia 8
code distribution is larger, with example programs, parton distribution function data files,
manual pages, and more. So far the original organizational structure of the code has been
possible to extend gradually and reasonably smoothly, but this may not always be the case.

The current and previous versions of the Pythia code, along with auxiliary documen-
tation and files, and relevant presentations by team members, can be found at the Pythia
webpage

http://home.thep.lu.se/Pythia

In one respect Pythia 8 is still trailing Pythia 6, namely in the size of the manual.
The current XML/HTML-based manual does document all settings and all user-accessible
methods, but is rather brief in the physics descriptions. Most is documented in separate
physics articles, of course, but from these it is not always possible to get a coherent view
over which di↵erent ideas have been implemented and combined how. One of the projects
for the future is to improve the physics documentation, both on the separate HTML web
pages and as a combined overview.

The size of the development team has fluctuated over the years, but is currently rising
at a steady pace. It remains quite Lund-centric, with most members being either former
(Christian Bierlich, Leif Lönnblad, Stefan Prestel, Peter Skands, myself) or current (Chris-
tine Rasmussen) PhD students. Others have been recruited as postdocs (Ilkka Helenius) or

16

5

Pythia Collaboration

• Javira Altmann (Monash University)

• Christian Bierlich (Lund University)

• Naomi Cooke (University of Glasgow)

• Nishita Desai (TIFR,Mumbai)

• Leif Gellersen (Lund University)

• Ilkka Helenius (University of Jyväskylä)

• Philip Ilten (University of Cincinnati)

• Leif Lönnblad (Lund University)

• StephenMrenna (Fermilab)

• Christian Preuss (University ofWuppertal)

• Torbjörn Sjöstrand (Lund University)

• Peter Skands (Monash University/Oxford)

• Marius Utheim (University of Jyväskylä)

• Rob Verheyen (University College London)

[Pythia meeting inMonash 2019]

Latest release 8.312 (May 2024)

[SciPost Phys. Codebases 8-r8.3 (2022)]

https://pythia.org

https://gitlab.com/Pythia8/releases

authors@pythia.org
6

https://arxiv.org/abs/2203.11601
https://pythia.org
https://gitlab.com/Pythia8/releases

Monte Carlo methods

6

Monte Carlo simulations

Method

• Based on numerical modelling and

statistics

• Sample “events” from known

distributions using

(pseudo-)random numbers

Useful when

• Distributions are difficult to handle

on pen and paper

• Multi-dimensional distributions

7

Monte Carlo techniques I

Analytical solution

• f(x) a one-dimensional distribution

• When xmin < x < xmax we have

0 < R < 1 such that∫ x

xmin

f(x′)dx′ = R
∫ xmax

xmin

f(x′)dx′

• If integral of f (F(x)) is known and
invertible (F−1(x))

x = F−1(F(xmin)+R(F(xmax)−F(xmin)))

R is a random number∈ [0,1[

8

Monte Carlo techniques I

Analytical solution

• f(x) a one-dimensional distribution

• When xmin < x < xmax we have

0 < R < 1 such that∫ x

xmin

f(x′)dx′ = R
∫ xmax

xmin

f(x′)dx′

• If integral of f (F(x)) is known and
invertible (F−1(x))

x = F−1(F(xmin)+R(F(xmax)−F(xmin)))

R is a random number∈ [0,1[

Example: f(x) = e−x, 0 < x < ∞
• F(x) = 1− e−x

• F−1(x) = − log(1− x)

⇒ x = − log(R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

N=0

8

Monte Carlo techniques I

Analytical solution

• f(x) a one-dimensional distribution

• When xmin < x < xmax we have

0 < R < 1 such that∫ x

xmin

f(x′)dx′ = R
∫ xmax

xmin

f(x′)dx′

• If integral of f (F(x)) is known and
invertible (F−1(x))

x = F−1(F(xmin)+R(F(xmax)−F(xmin)))

R is a random number∈ [0,1[

Example: f(x) = e−x, 0 < x < ∞
• F(x) = 1− e−x

• F−1(x) = − log(1− x)

⇒ x = − log(R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

N=1000

8

Monte Carlo techniques I

Analytical solution

• f(x) a one-dimensional distribution

• When xmin < x < xmax we have

0 < R < 1 such that∫ x

xmin

f(x′)dx′ = R
∫ xmax

xmin

f(x′)dx′

• If integral of f (F(x)) is known and
invertible (F−1(x))

x = F−1(F(xmin)+R(F(xmax)−F(xmin)))

R is a random number∈ [0,1[

Example: f(x) = e−x, 0 < x < ∞
• F(x) = 1− e−x

• F−1(x) = − log(1− x)

⇒ x = − log(R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

N=10000

8

Monte Carlo techniques I

Analytical solution

• f(x) a one-dimensional distribution

• When xmin < x < xmax we have

0 < R < 1 such that∫ x

xmin

f(x′)dx′ = R
∫ xmax

xmin

f(x′)dx′

• If integral of f (F(x)) is known and
invertible (F−1(x))

x = F−1(F(xmin)+R(F(xmax)−F(xmin)))

R is a random number∈ [0,1[

Example: f(x) = e−x, 0 < x < ∞
• F(x) = 1− e−x

• F−1(x) = − log(1− x)

⇒ x = − log(R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

N=100000

8

Monte Carlo techniques II

Hit-and-miss

• Let f(x) ≤ fmax in x ∈ [xmin, xmax[

1. Sample x = xmin + R1 (xmaxxmin)

2. Sample y = R2 fmax

3. while y > f(x) cycle to 1.

Importance sampling

• Pick g(x) such that f(x) < g(x) in
x ∈ [xmin, xmax[, integral of g(x) (G(x))
known andG(x)−1 simple

1. Sample x from g(x) (analytic)
2. Sample y = R g(x)
3. while y > f(x) cycle to 1.

Basic method 2: hit-and-miss

If f (x) fmax in xmin < x < xmax

use interpretation as an area

1 select
x = xmin + R (xmax � xmin)

2 select y = R fmax (new R!)

3 while y > f (x) cycle to 1

Integral as by-product:

I =

Z xmax

xmin

f (x) dx = fmax (xmax � xmin)
Nacc

Ntry

= Atot

Nacc

Ntry

Binomial distribution with p = Nacc/Ntry and q = Nfail/Ntry,
so error

�I

I
=

Atot

p
p q/Ntry

Atot p
=

r
q

p Ntry

=

r
q

Nacc

<
1

p
Nacc

Torbjörn Sjöstrand PPP 1: Introduction and MC techniques slide 27/81

Importance sampling

Improved version of hit-and-miss:
If f (x) g(x) in
xmin < x < xmax

and G (x) =
R

g(x 0) dx 0 is simple
and G�1(y) is simple

1 select x according to g(x)
distribution

2 select y = R g(x) (new R!)

3 while y > f (x) cycle to 1

Example 5:
f (x) = x e�x , x > 0
Attempt 1: F (x) = 1� (1 + x) e�x not invertible
Attempt 2: f (x) f (1) = e�1 but 0 < x <1

Torbjörn Sjöstrand PPP 1: Introduction and MC techniques slide 34/81

[figures by T. Sjöstrand] 9

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=100

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=100

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

N value error

100 3.08 0.0616

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=100

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

N value error

100 3.08 0.0616

1000 3.092 0.0496 0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=1000

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

N value error

100 3.08 0.0616

1000 3.092 0.0496

10000 3.118 0.0236
0.0 0.2 0.4 0.6 0.8 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

y

N=10000

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

N value error

100 3.08 0.0616

1000 3.092 0.0496

10000 3.118 0.0236

100000 3.14752 0.00593

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=10000

• Statistical uncertainty∝ 1√
Nevents

10

Hit and miss example: Calculate value for π

Monte Carlo algorithm

1. SampleN pairs of random numbers

(x, y), x, y ∈ [0,1[

2. Calculate number of points within

a quarter of circle x2 + y2 < 1

3. Approximated values

= 4 ∗ Ninside/Ntries

N value error

100 3.08 0.0616

1000 3.092 0.0496

10000 3.118 0.0236

100000 3.14752 0.00593

1000000 3.14208 0.000487

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

N=10000

• Statistical uncertainty∝ 1√
Nevents

10

Monte Carlo techniques III: The veto algorithm

Radioactive decays

• Probability P(t) proportional to the number of remaining nucleiN(t):

P(t) = −dN(t)
dt

= cN(t) ⇒ N(t) = exp(−ct)

• What if c time dependent: P(t) = f(t)N(t)? Need to solve

dN(t)
dt

= −f(t)N(t) ⇒ N(t) = exp

(
−
∫ t

0
dt′f(t′)

)
= exp (−(F(t)− F(0)))

AssumingN(0) = 1 and F(∞) = ∞we can sample decay time t from

t = F−1(F(0)− log(R))

• What if f(t) does not have F−1 (or even simple F)? Simple hit andmiss with

f(t)/g(t)would give
P(t) = f(t)exp

(
−
∫ t

0
dt′g(t′)

)
11

Monte Carlo techniques III: The veto algorithm

• Assume that we have g(x) such that f(x) < g(x),G simple and invertible

1. Start with i = 0 and t0 = 0

2. Take the next step: i = i+ 1

3. Sample ti = G−1(G(ti−1)− log(R)) (start from the previous point!)

4. Sample y = R g(ti)
5. while y > f(t) cycle to 2., otherwise accept ti

Winner takes it all
• Havemultiple possible decay channels

P(t) = −dN(t)
dt

= f1(t)N(t) + f2(t)N(t)

Go ahead by combining f(t) = f1(t) + f2(t) and pick channel from f1(t) : f2(t), Or:
1. Sample t1 from P1(t1) = f1(t1)N(t1)
2. Sample t2 from P2(t2) = f2(t2)N(t2)
3. Pick channel with smaller t, continue from this 12

Hard process generation

12

Internally defined hard processes

QCDprocesses

• Hard 2 → 2 partonic scatterings

(some 2 → 3)

• Heavy-quark production

Electroweak processes

• Prompt photon production

• EWboson production and exchange

• Deep inelastic scattering

• Photon collisions

Onia production

• Charmonioum, Bottomoniumwith

different spin states

Top production

• tt pairs and single top

Higgs production

• Standard-Model Higgs, also in

association with other particles

• Beyond-the-Standard-Model

Higgs

Beyond the StandardModel

• Supersymmetry

• DarkMatter

• Leptoquarks

• … 13

Phase-space sampling

• Factorized cross section for 2 → 2 scattering

σab =

∫
dτ
τ
dydt̂ x1fa(x1,Q

2) x2fb(x2,Q
2)

dσ̂(ŝ, t̂,Q2)

dt̂
,

where τ = x1 x2 and y = 0.5 log(x1/x2) is the
rapidity of the outgoing particles

• ŝ, t̂ and û are the (partonic) Mandelstam variables

p̂2T = t̂û
ŝ transversemomentum of the outgoing

partons

• Phase space parametrized with: τ , y and z,
where z = cos θ̂ (instead of t̂)

⇒ Can define cuts for ŝmin, ŝmax p̂T,min and p̂T,max

ŝmin
s < τ < ŝmax

s

−1
2 | log τ | < y(τ) < 1

2 | log τ |√
1−

4p̂2T,max

τs <

|z(τ)| <
√
1−

4p̂2T,min

τs

14

Phase-space biasing

• Phase-space sampling according to the cross section

⇒ More events in regions where cross section large

⇒ Difficult to populate all parts of the phase space

Example: dijet events

• Cross section of QCD 2 → 2 processes behave as

dσ
dp̂T

∝ 1
p̂nT

where n ≈ 4− 6 depending on collision energy

• How to fullfill phase space with large p̂T span?
0 200 400 600 800 1000

pT [GeV]

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

d
/d

pp
T [

m
b/

Ge
V]

Jet cross section
hard QCD

1. Generate events in smaller p̂T slices
2. Bias event sampling, compensate by assigning a weight for each event

15

Running Pythia

main01.cc

• Run as “main” programs

• Set up beams (default

LHC@14TeV)

• Pick hard process(es) and set

phase-space cuts

• Generate an event

• Analyse outgoing particles

• Repeat n times

• Collect results

16

Preparations

• Download the Docker image:

$ docker pull hepstore/rivet-pythia

• Start the container and set up the current directory as a “host” directory

(This way you can open andmodify files as they would be local files):

$ docker run -v $PWD:/host -it --rm hepstore/rivet-pythia

• Copy an example to your /host folder:

$ cd /host
$ cp ../usr/local/share/Pythia8/examples/main01.cc .
$ cp ../usr/local/share/Pythia8/examples/Makefile* .

• Compile and run the example:

$ make main01 && ./main01
17

Excercise I: Phase-space biasing

• Start from the main01.cc example in /host

$ cp main01.cc mymain01.cc

• Openmymain01.cc with a text-editor, modify such that

pythia.readString("PhaseSpace:pTHatMin=50.");
pythia.readString("PartonLevel:all=off");
pythia.readString("HadronLevel:all=off");
Hist pTevent("Hard-process-pT", 100, 0., 1000.);

• Within the event loop, save p̂T and fill histogram

double pTnow=pythia.info.pTHat();
pTevent.fill(pTnow);

• Increase the number of events to 10k, print histogram

cout << pTevent; 18

Exercise I: Phase-space biasing

19

Exercise I: Phase-space biasing

• Enable phase-space biasing:

pythia.readString("PhaseSpace:bias2Selection=on");
pythia.readString("PhaseSpace:bias2SelectionPow=4.");
pythia.readString("PhaseSpace:bias2SelectionRef=50.");

• Add another histogram

Hist pTweighted("Weighted-hard-process-pT", 100, 0.,
1000.);

• Within the event loop, fill the new histogram including event weight

double weight = pythia.info.weight();
pTweighted.fill(pTnow,weight);

• Print histograms

cout << pTevent << pTweighted; 20

Exercise I: Phase-space biasing

Modify bias2SelectionPow to get roughly a flat p̂T dependence, histogramwith

weights should remain as before

21

Exercise II: Inclusive jet production at the LHC

• Copy an example configuration to runwith main93

$ cp ../usr/local/share/Pythia8/examples/main93.cmnd .

• Include hard process and phase-space cuts from Excercise 1, remove

SoftQCD:all = on

Beams:eCM = 8000.
HardQCD:all = on
PhaseSpace:pTHatMin = 50.

• Include Rivet analysis for inclusive jets by ATLAS, remove others

Main:analyses = ATLAS_2017_I1604271

• Run generation for 10 000 eventsO(1 min)

$ pythia8-main93 -c main93.cmnd -o pp8TeV-flat
22

Exercise II: Inclusive jet production at the LHC

• Enable phase-space biasing from Excercise I in main93.cmnd
• Generate 10 000 eventsO(3 min)

$ pythia8-main93 -c main93.cmnd -o pp8TeV-bias

• There are now two .yoda files, compare to data and plot

rivet-mkhtml pp8TeV-flat.yoda:flat pp8TeV-bias.yoda:bias
-o html-jets

• Open the resulting html-jets/index.htmlwith a browser outside the container

Why Rivet? https://rivet.hepforge.org

• Allow for straightforward data comparison and plotting!

23

https://rivet.hepforge.org

Exercise II: Inclusive jet production at the LHC

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b Data

flat

bias

10−1

1

10 1

10 2

10 3

10 4

Inclusive jet cross section (|y| < 0.5), R = 0.6

d
2
σ

/
d

p
T

d
y

[p
b

/
G

eV
]

b b

10 2 10 3
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

pT [GeV]

M
C

/
D

a
ta

Final result

• Run out of statistics at large pT
with flat phase-space sampling

• Biasing the phase space with pnT
and compensating with event

weight can help a lot

• Fair agreement with the data

over several orders of

magnitude

24

Backup slides

Class structure of PythiaSciPost Physics Codebases Submission

The User

Input Main Program Output

Settings
LHA...
LHEF

Event process Event event

Info
Pythia8Rivet
HepMC
Hist

ProcessLevel
ProcessContainer
PhaseSpace
SLHAinterface
ResonanceDecay

PartonLevel
TimeShower
SpaceShower
Dire, Vincia
MultipleInteractions
BeamRemnants

HadronLevel
StringFragmentation
StringInteractions
ParticleDecays
BoseEinstein
LowEnergySigma

Merging
BeamParticle
SigmaProcess
SigmaTotal

Vec4, Rndm, ParticleData, PhysicsBase, UserHooks, HeavyIons, ...

Pythia 8.3 event generator

Figure 2: Simplified picture of the PYTHIA 8.3 structure, showing some of the impor-
tant classes in bold. The main program itself creates one or more Pythia objects,
and provides input in terms of Settings and potentially-perturbative event input.
The main physics components are grouped into ProcessLevel, PartonLevel, and
HadronLevel, with additional structure to complement and interconnect them.

multiple parton-level objects can be used for separate subcollisions, which are then combined for
hadronization.

From the user’s perspective, PYTHIA 8.3 is a C++ library. The actual executable is implemented
by the user, based on the requirements regarding input, output, features, and analysis, and many
examples come with the PYTHIA 8.3 package. For detailed information on how to install and use
PYTHIA 8.3, both standalone and with external interfaces, see part III. Figure 2 gives a rough
overview of the PYTHIA 8.3 program structure.

2.2 Monte-Carlo techniques

Real events observed in particle colliders are stochastic. To emulate this, event generators sample
from probability distributions using pseudo-random numbers. Naively, a pseudo-random number
(between 0 and 1) is compared to a cumulative distribution function to determine an effect, e.g.
the angle of a particle in a decay, the type of particle produced in hadronization, etc. Since real
cases are rarely this simple, we use this section to describe some of the technical details of how

15

	Appendix

