

Hot QCD: Heavy ion physics at RHIC and the LHC

Helen Caines (she/her), Wright Lab, Yale University

Midsummer QCD School, Saariselkä, Finland, July 2024

Goal of Hot QCD in a nutshell

Helen Caines - Yale - Midsummer QCD School - July 2024

Number of degrees of freedom increases by factor 10 at T~150 MeV \rightarrow quarks and gluons

Lattice calculations: rapid smooth crossover at $\mu_B \sim 0$

 $T_{pc} \approx 156.5 \pm 1.5 \text{ MeV}$

Goal of Hot QCD in a nutshell

Helen Caines - Yale - Midsummer QCD School - July 2024

Goal of Hot QCD in a nutshell

Helen Caines - Yale - Midsummer QCD School - July 2024

Terminology of a heavy-ion collision

Number of participants (N_{part}): number of incoming nucleons (participants) in overlap region Number of binary collisions (N_{bin}): number of equivalent inelastic nucleon-nucleon collisions

$$N_{bin} \ge N_{part}$$

More central collisions produce more particles

Helen Caines - Yale - Midsummer QCD School - July 2024

"<u>peripheral</u>" collision (b ~ b_{max}) collision (b \sim 0) "<u>central</u>"

Wealth of data available

LHC (top energy, rare probes): Pb+Pb, Xe+Xe, p+Pb, p+p For Pb+Pb mostly at 5.02 TeV **HUGE** datasets (significantly bigger at ATLAS and CMS)

RHIC (beam energy scan, different nuclei): U+U, Au+Au, Ru+Ru, Zr+Zr, Cu+Cu, O+O, Cu+Au, He³+Au, d+Au, p+Au, p+Al, p+p Mostly at 200 GeV but Au+Au from 3-200 GeV

LHC Beams@ALICE Run 1 and 2 (2009-2017)

Complimentary datasets

The phase diagram of QCD

The phase diagram of QCD

Helen Caines - Yale - Midsummer QCD School - July 2024

Do we create the necessary initial conditions?

Energy density in central collisions

Bjorken-Formula for Energy Density:

Energy density in central collisions

Helen Caines - Yale - Midsummer QCD School - July 2024

10 GeV/fm³. Is that a lot?

In a year, U.S.A (known energy hog) uses ~100 quadrillion BTUs of energy (1 BTU raises 1 lb water 1° F = 1 burnt match = 1,055 J). What size cube would you need to pack this energy into to produce equivalent energy density?

A. A cube ~1 m high by 100 367 km² (approximately the area of Lapland)?

- B. A cube ~1 cm x ~30 cm x ~20 cm (approximately size of your laptop)
- C. A cube ~1 mm x ~1 mm x ~0.1 mm (approximate size of snowflake)

D. A cube ~5 μ m x ~5 μ m x ~5 μ m (smaller than cross-section of your hair)

10 GeV/fm³. Is that a lot?

In a year, U.S.A (known energy hog) uses ~100 quadrillion BTUs of energy (1 BTU raises 1 lb water 1° F = 1 burnt match = 1,055 J). What size cube would you need to pack this energy into to produce equivalent energy density?

A. A cube ~1 m high by 100 367 km² (approximately the area of Lapland)?

B. A cube ~1 cm x ~30 cm x ~20 cm (approximately size of your laptop)

C. A cube ~1 mm x ~1 mm x ~0.1 mm (approximate size of snowflake)

D. A cube ~5 μ m x ~5 μ m x ~5 μ m (smaller than cross-section of your hair)

Helen Caines - Yale - Midsummer QCD School - July 2024

Temperature of chemical freeze-out

Number of particles of a given species related to temperature $dn_i \sim e^{-(E-\mu_B)/T} d^3p$

Assume all particles described by same temperature T and μ_B One ratio (e.g., \bar{p} / p) determines μ_B / T :

$$\frac{\bar{p}}{p} = \frac{e^{-(E-\mu_B)/T}}{e^{-(E-\mu_B)/T}} = e^{-2\mu_B/T}$$

A second ratio (e.g., K / π) provides T $\rightarrow \mu$

$$\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E\pi)/T}$$

Then all other hadronic ratios (and yields) defined

Temperature of chemical freeze-out

dN/dy

10³

10

10-1

 10^{-3}

10⁻⁵

10-7

Number of particles of a given species related to temperature $dn_i \sim e^{-(E-\mu_B)/T} d^3 p$

Assume all particles described by same temperature T and μ_B One ratio (e.g., \overline{p} / p) determines $\mu_{\rm B}/T$:

$$\frac{\bar{p}}{p} = \frac{e^{-(E-\mu_B)/T}}{e^{-(E-\mu_B)/T}} = e^{-2\mu_B/T}$$

A second ratio (e.g., K / π) provides $T \rightarrow \mu$

$$\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E\pi)/T}$$

Then all other hadronic ratios (and yields) defined

Chemical Freeze-out temperature T_{ch} close to that of T_{pc} at top energies

But this is the T at which hadronic ratios are fixed.

What about initial T?

Quarkonia - QGP thermometers

Formed only in the very early stages of the collision due to their high masses

Color screening of static potential between heavy quarks (Matsui and Satz, PLB 178 (1986) 416)

Helen Caines - Yale - Midsummer QCD School - July 2024

Charmonia: J/ψ , Ψ ', χc Bottomonia: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

	Ebinding (Ge
J/ψ	0.64
ψ'	0.05
Xc	0.2
Υ(1S)	1.1
Υ(2S)	0.54
Y(3S)	0.31

Suppression determined by T and binding energy

Sequential melting of quarkonia

CMS: PRL 109 (2012) 222301, PLB 835 (2022) 137397, STAR: PRL 130 (2023) 11230

Sequential melting of quarkonia

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies

CMS: PRL 109 (2012) 222301, PLB 835 (2022) 137397, STAR: PRL 130 (2023) 11230

Sequențial melting of quarkonia

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies

CMS: PRL 109 (2012) 222301, PLB 835 (2022) 137397, STAR: PRL 130 (2023) 11230

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies $T > 1.5 T_c \sim 300 MeV$

and top RHIC

CMS: PRL 109 (2012) 222301, PLB 835 (2022) 137397, STAR: PRL 130 (2023) 11230

Extracting the initial T: non-interacting probe

Di-leptons probe medium over its whole evolution.

Escape medium without interacting (no color charge)

е

Two for the price of one:

: Early time measurement

Quark-gluon plasma

e

p spectral function broadens when sitting in hot bath. Hadronic : Later time measurement matter

- Different di-lepton invariant mass ranges probe different times
- Production rate proportional to QGP temperature

Extracting the signal

Helen Caines - Yale - Midsummer QCD School - July 2024

Extracting the temperatures

in-medium p produced & broadened in similar heat bath from √s_{NN} =17-56 GeV

Extracting the temperatures

Low mass range: Similar mass spectrum, similar T, in-medium p produced & broadened in similar heat bath from √s_{NN} =17-56 GeV

Intermediate mass range: $T(\sqrt{s_{NN}} = 54.6) = 338 \pm 59 \text{ MeV} \sim T(\sqrt{s_{NN}} = 27) = 301 \pm 60 \text{ MeV}$ T(√s_{NN} =17) ~ 246 MeV Different medium below 20 GeV?

Phase diagram summary

Helen Caines - Yale - Midsummer QCD School - July 2024

How hot is ~200 MeV ?

- A. Approximately the same as the l Liperi, July 29, 2010)
- B. Approximately that of molten gold (~1000 °C)
- C. Approximately that of the center of the sun (~15 million °C)
- D. Approximately that of a supernova (~10 billion °C)
- E. Even hotter

A. Approximately the same as the hottest recorded T in Finland (~37.2 °C

How hot is ~200 MeV ?

- Liperi, July 29, 2010)
- B. Approximately that of molten gold (~1000 °C)
- C. Approximately that of the center of the sun (~15 million $^{\circ}C$)
- D. Approximately that of a supernova (~10 billion $^{\circ}C$)
- E.
 - Even hotter ~0.1 trillion °C

A. Approximately the same as the hottest recorded T in Finland (~37.2 °C

QGP: fluid or gas or plasma?

Almond shape overlap region in coordinate space

 v_1 : directed flow, v_2 : elliptic flow

Helen Caines - Yale - Midsummer QCD School - July 2024

QGP: fluid or gas or plasma?

Almond shape overlap region in coordinate space

Helen Caines - Yale - Midsummer QCD School - July 2024

Thomas - Science 298 2179 (2002)

QGP: fluid or gas or plasma?

Almond shape overlap region in coordinate space

Helen Caines - Yale - Midsummer QCD School - July 2024

Thomas - Science 298 2179 (2002)

Its a fluid

Helen Caines - Yale - Midsummer QCD School - July 2024

Data well described by hydrodynamical models with very low viscosity to entropy ratio

A near-perfect fluid!

Higher odd v_n terms dominantly due to event-by-event geometrical fluctuations

Evidence for partonic degrees of freedom

Elliptic flow is additive

If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

$$\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$$

- should become *simple* at the quark level
- $p_T \rightarrow p_T/n$
- $v_2 \rightarrow v_2 / n$
- n = (2, 3) for (meson, baryon)

STAR: PRL 95 (2005) 122301, PHENIX: PRL 98 (2007) 162301

Evidence for partonic degrees of freedom

Elliptic flow is additive

If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

$$\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$$

- should become *simple* at the quark level
- $p_T \rightarrow p_T/n$
- $v_2 \rightarrow v_2 / n$
- n = (2, 3) for (meson, baryon)

Constituents of QGP are partons

STAR: PRL 95 (2005) 122301, PHENIX: PRL 98 (2007) 162301

Charm quarks are also thermalized

STAR: PRL 118 (2017) 212301

Disappearance of partonic collectivity

Fails at $\sqrt{s_{NN}} = 3.2$ GeV and lower

Gradually restores up to $\sqrt{s_{NN}}$ = 4.5 G

Evident from $\sqrt{s_{NN}} = 7.7$ GeV onward

Helen Caines - Yale - Midsummer QCD School - July 2024

Partonic : $\sqrt{s_{NN}} > 5$ GeV

Speed of sound in QGP

Simple but elegant analysis

 $\boldsymbol{c_s^2} = \frac{dP}{d\varepsilon} = \frac{d\ln T}{d\ln s} = \frac{d\ln \langle p_T \rangle}{d\ln N_{ch}}$

Focus on ultra-central events - avoid geometry fluctuations

CMS: Rep. Prog. Phys. 87 (2024) 077801

Speed of sound in QGP

Simple but elegant analysis

Focus on ultra-central events - avoid geometry fluctuations

Helen Caines - Yale - Midsummer QCD School - July 2024

Data in excellent agreement with IQCD EoS

New data from ALICE suggest picture might be a bit more complicated

CMS: Rep. Prog. Phys. 87 (2024) 077801

Is there a Critical Point?

Back to the phase diagram

Searching for a Critical Point

Critical Points:

divergence of susceptibilities e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Lattice QCD:

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Searching for a Critical Point

Critical Points:

divergence of susceptibilities e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Lattice QCD:

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Divergences of conserved quantities may 10³ survive in the final state

Non-gaussian fluctuations of net-baryon density

Searching for CP

Particle number density, N/V = $n_k(T, \mu_k) =$

Theoretically susceptibilities of conserved quantities (B,Q,S) can be calculated :

 $\chi^{BSQ}_{lmn} = rac{\partial^{l+m+n}(p/T^4)}{\partial(\mu_B/T)^l\partial(\mu_S/T)^m\partial(\mu_O/T)^n}.$

Experiment measure event-by-event distribution of conserved quantities

Focus on net-proton as proxy for net-baryon

$$= \frac{d_k}{(2\pi)^3} \int \mathrm{d}^3 \vec{p} \frac{1}{(-1)^{B_k+1} + \exp((\sqrt{\vec{p}^2 + m_k^2} - \mu_k)/T)} = (\partial p/\partial \mu)$$

$$\delta N = N - \langle N \rangle$$

mean: $M = \langle N \rangle = VT^3 \chi_1,$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = V T^3 \chi_2,$ skewness: $S = \frac{\langle (\delta N)^3 \rangle}{\sigma^3} = \frac{VT^3 \chi_3}{(VT^3 \chi_3)^{3/2}},$ Take ratios to remove volume and T dependence kurtosis: $\kappa = \frac{\langle (\delta N)^4 \rangle}{4} - 3 = \frac{VT^3 \chi_4}{2}$

Searching for CP

Particle number density, N/V = $n_k(T, \mu_k) =$

Theoretically susceptibilities of conserved quantities (B,Q,S) can be calculated :

 $\chi^{BSQ}_{lmn} = rac{\partial^{l+m+n}(p/T^4)}{\partial(\mu_B/T)^l\partial(\mu_S/T)^m\partial(\mu_O/T)^n}.$

Experiment measure event-by-event distribution of conserved quantities

Focus on net-proton as proxy for net-baryon

Kurtosis x Variance² ~ $\chi^{(4)}/\chi^{(2)}$

Helen Caines - Yale - Midsummer QCD School - July 2024

$$= \frac{d_k}{(2\pi)^3} \int \mathrm{d}^3 \vec{p} \frac{1}{(-1)^{B_k+1} + \exp((\sqrt{\vec{p}^2 + m_k^2} - \mu_k)/T)} = (\partial p/\partial \mu)$$

 $\delta N = N - \langle N \rangle$

mean: $M = \langle N \rangle = VT^3 \chi_1,$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = V T^3 \chi_2,$ skewness: $S = \frac{\langle (\delta N)^3 \rangle}{\sigma^3} = \frac{VT^3 \chi_3}{(VT^3 \chi_3)^{3/2}},$ Take ratios to remove volume and T dependence kurtosis: $\kappa = \frac{\langle (\delta N)^4 \rangle}{\sigma^4} - 3 = \frac{VT^3 \chi_4}{(VT^3 \chi_2)}$

(Kurtosis - 4th moment - "tailiness" of distribution)

M. Stephanov. PRL 107:052301(2011)

Presence of Critical Point?

- **Correlation lengths**
 - diverge →
- Net-p κσ² diverge

Presence of Critical Point?

Top 5% central collisions: **Non-monotonic behavior** Enhanced p_T range \rightarrow enhanced signal Not see in peripheral data

UrQMD (no Critical Point): shows suppression at lower energies - due to baryon number conservation

Helen Caines - Yale - Midsummer QCD School - July 2024

- **Correlation lengths**
 - diverge \rightarrow
- Net-p $\kappa \sigma^2$ diverge

STAR: PRL 126 (2021) 92301, PRC 104 (2021) 024902, PRL 127 (2021) 262301, PRL 128 (2022) 202303 27

Presence of Critical Point?

Top 5% central collisions: **Non-monotonic behavior** Enhanced p_T range \rightarrow enhanced signal Not see in peripheral data

UrQMD (no Critical Point): shows suppression at lower energies - due to baryon number conservation

Helen Caines - Yale - Midsummer QCD School - July 2024

STAR: PRL 126 (2021) 92301, PRC 104 (2021) 024902, PRL 127 (2021) 262301, PRL 128 (2022) 202303 27

- **Correlation lengths**
 - diverge \rightarrow
- Net-p $\kappa \sigma^2$ diverge

Hints of Critical fluctuations More data needed

BES-II data released this month

BES-II data released this month

Can we understand the nature of parton interactions with the QGP?

How do partons interact with the QGP?

Helen Caines - Yale - Midsummer QCD School - July 2024

Average number of p+p collisions in A+A collision

No "Effect":

R < 1 at small momenta production from thermal bath

R = 1 at higher momenta ⁶ where hard processes dominate

Strong "jet quenching" observed

Strong "jet quenching" observed

What about charmonia?

Helen Caines - Yale - Midsummer QCD School - July 2024

Much more suppression at **RHIC** than at the LHC!

What about charmonia?

Helen Caines - Yale - Midsummer QCD School - July 2024

Much more suppression at **RHIC** than at the LHC!

J/w melts but also regenerates

RHIC much less regeneration in the medium (only a few c quarks created, once melted don't reform)

LHC

What about looking at jets?

p and E MUST be conserved even with quenched jets

Can we restore "quenched" energy by looking at jets? Study nuclear modification factor (R_{AA}) of jets

What about looking at jets?

p and E MUST be conserved even with quenched jets

Quenched energy not recovered

$R_{AA}(5 \text{ TeV}) \sim R_{AA}(2.76 \text{ TeV})$

Compensating effects of higher E_{loss} and flatter p_T spectrum

Can we restore "quenched" energy by looking at jets? Study nuclear modification factor (R_{AA}) of jets

ATLAS: PLB 790 (2019) 108

Opaqueness/stopping power of QGP

Measure fractional momentum loss $\delta p_T/p_T$ instead of R_{AA}

Opaqueness/stopping power of QGP

Opaqueness/stopping power of QGP

So what is happening?

Jet quenching understood to arise from elastic and inelastic interactions of partons with QGP, with coherence effects playing an important role

Where does the energy go?

Helen Caines - Yale - Midsummer QCD School - July 2024

- Reconstruct jet recoiling from high p_T photon
- since photons don't interact "know" initial parton energy
- Examine fragmentation hadrons

$$\xi_{\mathrm{T}}^{\gamma} = \ln\left[-|\vec{p}_{\mathrm{T}}^{\gamma}|^{2}/(\vec{p}_{\mathrm{T}}^{\mathrm{trk}}\cdot\vec{p}_{\mathrm{T}}^{\gamma})\right]$$

- take ratio Pb+Pb/p+p

"Lost" hard particles emerge as multiple soft particles

- Jet substructure is highly modified
- Particles emerge at large R and low p_T

Determining QGP transport properties

Advances continue - especially via JETSCAPE (but not only) - exploit bayesian inference

Now includes jet R_{AA} and substructure measurements

- Λ $\hat{q} = Q^2/L$ Q - mtm transfer to medium L - path length
- Most precise estimate to-date

Does the T evolution explain differences at RHIC and the LHC?

Determining QGP transport properties

Some tension when include hadron RAA

Helen Caines - Yale - Midsummer QCD School - July 2024

Advances continue - especially via JETSCAPE (but not only) - exploit bayesian inference

Now includes jet R_{AA} and substructure measurements

Λ $\hat{q} = Q^2/L$ Q - mtm transfer to medium L - path length

Most precise estimate to-date

Does the T evolution explain differences at **RHIC** and the LHC?

> Some physics missing? **Uncertainties incorrect?** Theory uncertainty critical? All of the above?

Unexpected physics found along the way

Is charm fragmentation universal?

Helen Caines - Yale - Midsummer QCD School - July 2024

Heavy-flavor yields computed in pQCD via convolution of

PDFs + partonic cross-section + FF

FF: typically parametrized from e⁺e⁻ / ep measurements Assumption that charm hadronization universal

 $f(c \rightarrow H_c)$ from p+p collisions different to e⁺e⁻ and ep data

>3x more charm baryons than than in e⁺e⁻ and ep

> Assumption of universal (charm) fragmentation is not valid

Note: LHC cc cross-section is consistent with pQCD predictions (although at upper limit)

First observation of anti-He⁴!

Fact that we are in a matter Universe not due to "problem" creating anti-matter

Helen Caines - Yale - Midsummer QCD School - July 2024

Matter and antimatter formed at same rate

Now know rates we should see anti-matter in space experiments

(anti)Hypernuclei are also created

Evidence of formation of excited hypernuclei states in heavy ion collisions

Hyper-Helium-4 lifetime measurement in heavy ion collisions

Helen Caines - Yale - Midsummer QCD School - July 2024

 $^{4}_{\Lambda}$ He Lifetime [ps]

Anti-Hyper-Hydrogen-4

n

ā

n

41

f₀(980) quark content

Longstanding question "is the f_0 a diquark, molecular, or tetraquark?"

Difficult/impossible question to answer theoretically - up to experiments to answer

fo(980) quark content

Longstanding question "is the f_0 a diquark, molecular, or tetraquark?"

Difficult/impossible question to answer

What carries baryon number?

Quarks as baryon carriers?

If baryon number carried by: Valence quarks - B/Q = A/ZBaryon junctions - B/Q > A/Z

Use Isobar data from STAR:

Ru+Ru: A = 96, Z = 44
Zr+Zr: A = 96, Z = 40
$$B = (N_p - N_{\bar{p}}) + (N_n - N_{\bar{n}})$$
$$Q = (N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})$$
$$\Delta Q = Q_{Ru} - Q_{Zr} \quad \text{Measure B}/\Delta Q$$

$$Z = Z_{Ru} - Z_{Zr}$$
 Calculate $\Delta Z/A$

Helen Caines - Yale - Midsummer QCD School - July 2024

Baryon-junction as baryon carrier?

fig: Suganuma et al. AIP Conf.Proc. 756 (2005) 1, 123

What carries baryon number?

Quarks as baryon carriers?

If baryon number carried by: Valence quarks - B/Q = A/ZBaryon junctions - B/Q > A/Z

Use Isobar data from STAR:

Ru+Ru: A = 96, Z = 44
Zr+Zr: A = 96, Z = 40

$$B = (N_p - N_{\bar{p}}) + (N_n - N_{\bar{n}})$$

$$Q = (N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})$$

$$\Delta Q = Q_{Ru} - Q_{Zr} \qquad \text{Measure B}/\Delta Q$$

$$\Delta Z = Z_{Ru} - Z_{Zr} \qquad \text{Calculate } \Delta Z/A$$

Small system complexity

Initially thought p+A - "cold" matter baseline

Clear collective motion signals now observed at LHC and RHIC Intermediate p_T - NCQ scaling

44

Small system complexity

No clear signs of jet quenching reported

Do we make a very small QGP in more central p+A events?

Helen Caines - Yale - Midsummer QCD School - July 2024

Initially thought p+A - "cold" matter baseline

Clear collective motion signals now observed at LHC and RHIC Intermediate p_T - NCQ scaling

ATLAS: PRL 131 (2023) 072301

The spinning QGP

How does that affect fluid/transport? Vorticity - local spinning motion

Viscosity dissipates vorticity to fluid at larger scales

Can we see any manifestation of this in the data?

- |L| ~ 10⁵ in peripheral collisions
- We generate a "spinning" QGP?
- Spectators create a large magnetic field

Measuring A Global Polarization

Global polarization (alignment of spin with collision system angular momentum)

Direction of L: Estimate from 1st order reaction plane

 Λ Polarization Self analyzing Decay p preferentially emitted in a spin Warringa, Nucl.Phys.A803, 227 (2008) direction McLerran and Skokov, Nucl. Phys. A929, 184 (2014) Decay anti-proton preferentially emitted against anti-A spin direction

• Sigma feed to only the signal feed to only the second se

A anti-aligned, anti-A aligned with L $\rightarrow \mu_{H}$ - B coupling

Sigma feed-down goes with the primaries

Helen Caines - Yale - Midsummer QCD School - July 2024

Global A polarization

Precision measurements have now been made from 3-5000 GeV:

Highly vortical fluid: ω ~10²² s⁻¹

Global A polarization

Precision measurements have now been made from 3-5000 GeV:

> Highly vortical fluid: ω~10²² s⁻¹

How fast is that compared to the most powerful tornado?

a) slower

- b) about the same
- 1000 times faster C)
- d) billion times fast

e) even faster

Global A polarization

Precision measurements have now been made from 3-5000 GeV:

> Highly vortical fluid: ω~10²² s⁻¹

How fast is that compared to the most powerful tornado?

a) slower

b) about the same

1000 times faster C)

d) billion times fast

even faster e)

ten billion trillion times faster

Splitting of hyperon polarization

Helen Caines - Yale - Midsummer QCD School - July 2024

Late stage magnetic field should cause splitting in (anti) A polarization

No splitting observed over wide range of beam energies

At 95% confidence level late stage magnetic field

(Initial field 10^{14} - 10^{16} T) $B(19.6 \text{ GeV}) < 9.4 \times 10^{12} T$

B (27 GeV)< 1.4x10¹³ *T*

Does magnetic field die away too quickly? Can we probe at earlier time?

Can we detect new physics via UPC?

UPC: Explosion in studies over past 10 Years

2017: Light-by-Light

2021: Breit-Wheeler

Open Access | Published: 14 August 2017

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration

Nature Physics 13, 852–858 (2017) Cite this article

41k Accesses | 185 Citations | 521 Altmetric | Metrics

ScienceAdvances

MAAAS

Tomography of ultrarelativistic nuclei with polarized photongluon collisions rview of attention for article published in Science Advances, January 2023

Scientists See Quantum Interference between Different Kinds of Particles for First Time

A newly discovered interaction related to quantum entanglement between dissimilar particles opens a new window into the nuclei of atoms

of 37,322 outputs

Exploiting both yy and y-A collisions

Evidence for gluon saturation

- J/ψ photo-production:
- CMS (and ALICE) recently accessed new W (photon-nucleon CM) range
 - Shape of coherent $\sigma_{\gamma A \rightarrow J/\psi A'}(W)$ not predicted
- by models
 - Gluon saturation? black disk limit?

Evidence for gluon saturation

Suppression of di- π^0 correlations in p+A - Dependence on A as predicted - No broadening, not as predicted

Hints of saturation at RHIC and LHC

- J/ψ photo-production:
- CMS (and ALICE) recently accessed new W (photon-nucleon CM) range
 - Shape of coherent $\sigma_{\gamma A \rightarrow J/\psi A'}(W)$ not predicted
- by models
 - Gluon saturation? black disk limit?

Anomalous magnetic moment of τ lepton

Recent a_{μ} ($a_{l} = 1/2(g - 2)I$) measurements challenge SM predictions.

If new physics and due to massive new particle, then τ would be much more sensitive

From p+p:

 $a_{\tau} = 0.0009 + 0.031 - 0.0021$

(consistent with SM)

First uses of hadron-collider data to test EM properties of τ Results are competitive with existing lepton-collider constraints

Summary

Wealth of high quality data across $\sqrt{s_{NN}}$, species and centralities has conclusively shown that a QGP is formed are allowing detailed studies that highlight underlying physics we could previously gloss over

Much is now understood about this unique state of matter

We have uncontrovertibly established that: - the QGP is a dense and opaque and initially very how

- the QGP is highly vortical
- the relevant degrees of freedom are those of quarks and gluons
- chemical freeze out

- the QGP flows almost as a perfect liquid (very small shear and bulk viscosity) - equilibration/thermalization is first achieved in the QGP and persists through to

Outlooks

Bright future ahead Next few years: New data from sPHENIX, STAR forward, LHC Run-3 Next-to-Next few years: EIC, ALICE-3, and CBM@FAIR

Lots left to discover!

Of the open questions that remain are: - What are the minimal conditions to create a QGP?

- Is there a Critical Point in the QCD phase diagram?
- Can we see evidence of chiral restoration?
- Can we determine additional properties such as its heat capacity, compression modulus, electric conductivity, color conductivity?
- What is the magnitude of the initial magnetic field?
- How is baryon number carried?

Timeline of a heavy-ion collision

Relativistic Heavy-Ion Collisions

Helen Caines - Yale - Midsummer QCD School - July 2024

final detected particle distributions $\sim \sim \sim$ free streaming $\tau \sim 10^{15} \, \text{fm/c}$

Can only measure final state particles and photons

How to probe the earlier stages?

The phase transition in the laboratory

Chemical freeze-out: $(T_{ch} \le T_c)$: inelastic scattering ceases Kinetic freeze-out:

 $(T_{fo} \leq T_{ch})$: elastic scattering ceases

The phase transition in the laboratory

Chemical freeze-out: $(T_{ch} \le T_c)$: inelastic scattering ceases Kinetic freeze-out:

 $(T_{fo} \leq T_{ch})$: elastic scattering ceases

Energy density is a necessary but not sufficient condition

 $\epsilon(\sqrt{s} = 7 \text{ TeV pp LHC}) >> \epsilon(\sqrt{s} = 200 \text{ GeV Au-Au RHIC})$

Thermal Equilibrium ⇒

many constituents

Helen Caines - Yale - Midsummer QCD School - July 2024

Varying trajectory through the phase diagram?

With BES-II statistics and new TPC acceptance can explore rapidity dependence

Helen Caines - Yale - Midsummer QCD School - July 2024

Next step: Compare mid-rapidity/low $\sqrt{s_{NN}}$ and high rapidity/high $\sqrt{s_{NN}}$

Chemical freeze-out parameters match but initial conditions differ. Can we see the difference imprinted elsewhere?

Probing (grand)canonical production

Helen Caines - Yale - Midsummer QCD School - July 2024

- Things change at $\sqrt{s_{NN}} = 3 \text{ GeV}$
 - Collision energy:
 - below threshold for Ξ
 - very close to threshold for φ

Local treatment of strangeness conservation crucial

Small strangeness correlation radius preferred $r_c \le 4.2 \text{ fm}$

CE cannot simultaneously describe ϕ/K^- and ϕ/Ξ^- ratios significant change in strangeness production at this low energy

 T_{ch} = 72.9 MeV and μ_B = 701.4 MeV

Resonance/nonresonance probes hadronic phase between chemical and kinetic freeze-out

rescattering cross-section also important

Helen Caines - Yale - Midsummer QCD School - July 2024

Softe

Fermi-Landau initial conditions with ideal hydro expansion : $c_s^2 = \partial P/\partial \epsilon$ $c_s^2 = 0$ for a sharp phase transition

10

 10^{2}

v √s_{NN} [GeV]

Softest Point: minimum je @se

0.2^t

$$\frac{dn}{dy} = \frac{Ks_{NN}^{1/4}}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{y^2}{2\sigma_y^2}} \quad \sigma_y^2 = \frac{8}{3} \frac{c_s^2}{1 - c_s^4} \ln\left(\frac{\sqrt{s}}{2m_N}\right)$$

Minimum observed at $\sqrt{s} = ~7$ GeV Minimum in the speed of sound? $c_{s^2} \sim 0.26$

Indication of softening of EoS?

NA61/SHINE see minima in similar place for pp data

Confirm c_s in other ways?

Helen Caines - Yale - Midsummer QCD School - July 2024

of State

E895: J. L. Klay et al, PRC 68, 05495 (2003) NA49: S. V. Afanasiev et al. PRC 66, 054902 (2002) BRAHMS: I.G. Bearden et al., PRL 94, 162301

Significant enhancement above cocktail

- Low mass range
 - Intermediate mass range

Clear enhancement for LMR and IMR

Significant enhancement above cocktail

Helen Caines - Yale - Midsummer QCD School - July 2024

Estimating the initial temperature

Direct Photons:

- no charge or color
- emitted over all lifetime \rightarrow convolution of all T

\rightarrow don't interact with medium

HIC: surpass critical temperature

Helen Caines - Yale - Midsummer QCD School - July 2024

After background subtraction:

Emission rate and shape consistent with that from a hot thermally equilibrated medium

> Hydro models fit to data $T_{RHIC} = 300 - 600 \text{ MeV}$ $> 2^*T_c$ T = 0.15-0.6 fm/c

Large uncertainty due to correlated pair background i.e. jets

HIC: surpass critical temperature

Helen Caines - Yale - Midsummer QCD School - July 2024

Emission rate and shape consistent with that from a hot thermally equilibrated medium

> Hydro models fit to data T_{RHIC} = 300 - 600 MeV $> 2^{*}T_{c}$ T = 0.15 - 0.6 fm/c

Large uncertainty due to correlated pair background i.e. jets

Even hotter temperatures extracted at the LHC

PHENIX: PRL 104 (2010) 132301

Presence of a Critical Point?

Critical Points: divergence of susceptibilities

e.g. magnetism transitions

and divergence of correlation lengths e.g. critical opalescence

In HI:

Large event-by-event fluctuations of conserved quantities (Q,B S) as the non-equilibrium correlation length, ξ , diverges

Correlation lengths diverge \rightarrow

Net-p κσ² diverge

Normalized Number of Events 0.00 0.04 0.05 0

STAR: PRL **126** (2021) 92301 STAR: PRL 127 (2021) 262301

Net-proton cummulants at LHC

Lattice calculations suggest susceptibilities sensitive to initial EM field

Net-proton cummulants at LHC

Lattice calculations suggest susceptibilities sensitive to initial EM field

Helen Caines - Yale - Midsummer QCD School - July 2024

First measurement above 2 GeV/c Fluctuation in high p range increases in peripheral events - B-field largest

> More discussion with theory and measurement in pp needed

Nuclear modification of light species

For $\sqrt{s_{NN}}$ > 27 GeV suppression observed

Helen Caines - Yale - Midsummer QCD School - July 2024

Nuclear modification of light species

For $\sqrt{s_{NN}}$ > 27 GeV suppression observed

Differences for baryons and mesons

Helen Caines - Yale - Midsummer QCD School - July 2024

Nuclear modification of light species

For $\sqrt{s_{NN}}$ > 27 GeV suppression observed

Differences for baryons and mesons

New ϕ data indicate mass not baryon/meson effect?

Helen Caines - Yale - Midsummer QCD School - July 2024

Is flow hiding Eloss? How to disentangle?

Precision quenching measurements

 $\overline{\mathbf{v}}$

part ·

 $R_{AA}(p_T) = \frac{Yield(A + A)}{Yield(p + p) \times \langle N_{coll} \rangle}$

R_{AA} in 0-60% central events (N_{part}>20) decrease with N_{part}

Same R_{AA} at same N_{part} regardless of system

Deviation from trend starting at N_{part} ≤20 Event selection bias in peripheral events causes artificial suppression? - HG-PYTHIA qualitatively gets trend but predicts steeper drop

Jet quenching linear with log(Npart)

STAR: PRL 91, 172302 (2003), PRL 91, 072304 (2003), PRC 81, 054907 (2010) Loizides & Morsch, PLB 773 (2017) 408-4

Diffusion Wake or Not?

At (nc

- Lost jet energy generates diffusion wake
- —> Depleted particle production in γ direction
- —> Wake larger when xJ smaller
- At 95% CL wake < 0.8% perturbation of bulk
- (note CoLBT predicts 0.2%)

.

Diffusion Wake or Not?

Jets recoiling off of a high p_T trigger hadron

Shape of IAA best reproduced when wake included Shape not sensitive to Moliere/elastic scattering

Different sensitivities? Proposal better to look at groomed substructure? What is wake and what's soft gluon emission

Lost jet energy generates diffusion wake —> Depleted particle production in γ direction —> Wake larger when x_J smaller At 95% CL wake < 0.8% perturbation of bulk

(note CoLBT predicts 0.2%)

Selection Bias Rather Than Decoherence?

y-jet: Use photon to select initial not quenched energy Balanced x_J: Bias towards jets with $E_{Loss}=0$, wide R_g jets disfavored

"All" x_J : No biasing on amount of E_{Loss} , no R_g dependence in PbPb/pp ratio

Selection Bias Rather Than Decoherence?

Balanced x_J: Bias towards jets with E_{Loss}=0, wide R_g jets disfavored Inclusive: select via jet p_T after quenching

Helen Caines - Yale - Midsummer QCD

- "All" x_J: No biasing on amount of E_{Loss} , no R_g dependence in PbPb/pp ratio
- Inclusive jet: wide R_g jets disfavored. E_{Loss} higher so shifted to lower jet p_T
 - Now we know there is a bias, can we use it to our favor as has been done at RHIC?

Where does lost energy go?

Helen Caines - Yale - Midsummer QCD School - July 2024

71

Where does lost energy go?

Helen Caines - Yale - Midsummer QCD School - July 2024

71

Probing energy flow in jets

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Probing energy flow in jets

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Scaling by jet p_T: universal transition point - HF jets' transition point affected deadcone

Probing energy flow in jets

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Scaling by jet p_T: universal transition point - HF jets' transition point affected deadcone

Helen Caines - Yale - Midsummer QCD School - July 2024

Ratio of 3-point/2-point correlators:

consistent with running of α_s

Sensitivity to medium effects

First study using static toy model and no background θ_c - decoherence angle, θ_L - where formation time longer than L $\theta_L \ll \theta_c \ (E \gg \hat{q} L^2)$ $\theta_L \gg \theta_c (E \ll \hat{q} L^2)$

How does more realistic simulation look?

Helen Caines - Yale - Midsummer QCD School - July 2024

Medium-induced radiation effects only at small angles θ_{onset} independent of q

Collaborations hard at work on these measurements, expect first results soon

Directed flow difference

Difference in particle-anti-particle slope: Increases with decreasing centrality - Higher B-field Increases with decreasing beam energy - Increasing crossing time Has species dependence - transported vs created quarks

Speed of Sound: ALICE

Summary plot of extracted c_s^2 with different centrality estimators and various η separations between particles used for $\langle p_{\rm T} \rangle$ and centrality

The extraction is heavily dependent on the choice of centrality estimator A significant difference in forward versus midrapidity centrality determination and from the bias of the centrality estimator

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch}/{ m d} \eta angle$	η
N _{ch} in TPC	Ι	$ \eta \leq 0.8$	$ \eta \leq 0.8$	
	II	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$	(
$E_{\rm T}$ in TPC	III	$ m\eta \le 0.8$	$ m\eta \le 0.8$	
	IV	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$	(
N _{tracklets} in SPD	v	$ \eta \leq 0.8$	$ \eta \leq 0.8$	
	VI	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ m\eta \leq 0.3$	(
	VII	$0.3 < oldsymbol{\eta} \le 0.6$	$ \eta \leq 0.3$	
	VIII	$0.7 \leq oldsymbol{\eta} \leq 1$	$ \eta \leq 0.3$	(
N _{ch} in V0	IX	$-3.7 < \eta < -1.7 + 2.8 < \eta < 5.1$	$ oldsymbol{\eta} \leq 0.8$	

What carries the baryon number?

Baryon-junction as baryon carrier?

fig: Suganuma et al. AIP Conf.Proc. 756 (2005) 1, 123

Study photonuclear events: Very clean process

Baryon number in 3 valence quarks - no stopped baryons Baryon junctions - produce midrapidity proton

What carries the baryon number?

stronger rapidity dependent stopping in γ+Au than peripheral Au+Au at approximately same multiplicity

Path towards a microscopic understanding of what carries baryon number & how it is stopped

Helen Caines - Yale - Midsummer QCD School - July 2024

Baryon-junction as baryon carrier?

fig: Suganuma et al. AIP Conf.Proc. 756 (2005) 1, 123

Study photonuclear events: Very clean process

Baryon number in 3 valence quarks - no stopped baryons

Baryon junctions - produce midrapidity proton

Small system flow

ALI-PREL-543472

Low p_T - mass ordering

Intermediate p_T - NCQ scaling

Small system flow

ALI-PREL-543472

v₂ and v₃ differences at RHIC largely due to use of different rapidity ranges

Helen Caines - Yale - Midsummer QCD School - July 2024

B. Schenke, M.Zhao

Substructure of oxygen

Helen Caines - Yale - Midsummer QCD School - July 2024

v₂{2} - sensitive to fluctuations

v₂{4} - reduced sensitivity to fluctuations

Data: in central event but fluctuations enhanced, (v₂ reduced overall)

Theory: Alpha clusters enhance fluctuations

Data strongly favor alpha-clustering

Energy loss vs energy density

More details on estimates see 2308.05743 J. Harris & B. Muller

Helen Caines - Yale - Midsummer QCD School - July 2024

- E_{Loss} from: shift of p_T spectra
- Approximate energy density from:
- $dN_{ch}/d\eta \longrightarrow dS/dy \longrightarrow s_f T_f = dS/dy/A_T = s_{init} T_{init}$

$$\epsilon_{init} = 3/4 s_{init} T_{int}$$

Given number of approximations reasonably reasonable correlation between ELoss and Einit over different species and collision energies

- Link between entropy and charged particle density very sensitive to viscosity.
- Maybe worth more careful calculation?

Energy loss to p(d)-Au medium?

Helen Caines - Yale - Midsummer QCD School - July 2024

Energy loss to p(d)-Au medium?

Helen Caines - Yale - Midsummer QCD School - July 2024

Nuclear modification of jets

- Charged jet results at same p_T for RHIC and LHC (N.B. scale by ~1.5 to get to full jet equivalent p_T)
- Similar R_{AA} for both collision energies

Nuclear modification of jets

Helen Caines - Yale - Midsummer QCD School - July 2024

Different spectral shapes for particles of differing mass → strong collective radial flow

Helen Caines - Yale - Midsummer QCD School - July 2024

Different spectral shapes for particles of differing mass → strong collective radial flow

Good agreement with hydrodynamic explosively expanding source

STAR: PRC 96, (2017) 044904

