Helen Caines (she/her), Wright Lab, Yale University

Hot QCD: Heavy ion physics at RHIC and the LHC

Midsummer QCD School, Saariselkä, Finland, July 2024

Goal of Hot QCD in a nutshell

Goal of Hot QCD in a nutshell

Goal of Hot QCD in a nutshell

Helen Caines - Yale - Midsummer QCD School - July 2024 2

Terminology of a heavy-ion collision

Number of participants (N_{part}): number of incoming nucleons (participants) in overlap region Number of binary collisions (N_{bin}) : number of equivalent inelastic nucleon-nucleon collisions

$$
N_{\text{bin}} \geq N_{\text{part}}
$$

More central collisions produce more particles

Helen Caines - Yale - Midsummer QCD School - July 2024 3

"peripheral" collision (b \sim b_{max}) "central" collision $(b - 0)$

LHC Beams@ALICE Run 1 and 2 (2009-2017)

Wealth of data available

RHIC (beam energy scan, different nuclei): U+U, Au+Au, Ru+Ru, Zr+Zr, Cu+Cu, O+O, Cu+Au, He3+Au, d+Au, p+Au, p+Al, p+p Mostly at 200 GeV but Au+Au from 3-200 GeV

Complimentary datasets

Pb+Pb, Xe+Xe, p+Pb, p+p For Pb+Pb mostly at 5.02 TeV HUGE datasets (significantly bigger at ATLAS and CMS)

The phase diagram of QCD

The phase diagram of QCD

Helen Caines - Yale - Midsummer QCD School - July 2024 5

Do we create the necessary initial conditions?

Helen Caines - Yale - Midsummer QCD School - July 2024

Bjorken-Formula for Energy Density:

Energy density in central collisions

Energy density in central collisions

Helen Caines - Yale - Midsummer QCD School - July 2024 T_{H} California and statistical statistical statistical statistical and systematic statistical and systemati

10 GeV/fm3. Is that a lot?

In a year, U.S.A (known energy hog) uses ~100 quadrillion BTUs of energy (1 BTU raises 1 lb water 1° F = 1 burnt match = 1,055 J). What size cube would you need to pack this energy into to produce equivalent energy density?

A. A cube \sim 1 m high by 100 367 km² (approximately the area of Lapland)?

- B. A cube \sim 1 cm x \sim 30 cm x \sim 20 cm (approximately size of your laptop)
- C. A cube \sim 1 mm x \sim 1 mm x \sim 0.1 mm (approximate size of snowflake)
-

D. A cube \sim 5 μ m x \sim 5 μ m x \sim 5 μ m (smaller than cross-section of your hair)

10 GeV/fm3. Is that a lot?

In a year, U.S.A (known energy hog) uses ~100 quadrillion BTUs of energy (1 BTU raises 1 lb water 1° F = 1 burnt match = 1,055 J). What size cube would you need to pack this energy into to produce equivalent energy density?

A. A cube \sim 1 m high by 100 367 km² (approximately the area of Lapland)?

B. A cube \sim 1 cm x \sim 30 cm x \sim 20 cm (approximately size of your laptop)

C. A cube \sim 1 mm x \sim 1 mm x \sim 0.1 mm (approximate size of snowflake)

D. A cube \sim 5 μm x \sim 5 μm x \sim 5 μm (smaller than cross-section of your hair)

Helen Caines - Yale - Midsummer QCD School - July 2024 8411 18KV 8 8

A second ratio (e.g., K / π) provides $T \rightarrow \mu$

Then all other hadronic ratios (and yields) defined

$dn_i \sim e^{-(E-\mu_B)/T} d^3p$ Number of particles of a given species related to temperature

Assume all particles described by same temperature T and μ_B One ratio (e.g., \overline{p} / p) determines μ_B / T :

$$
\frac{\bar{p}}{p} = \frac{e^{-(E-\mu_B)/T}}{e^{-(E-\mu_B)/T}} = e^{-2\mu_B/T}
$$

Temperature of chemical freeze-out

$$
\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E\pi)/T}
$$

A second ratio (e.g., K / π) provides $T \rightarrow \mu$

Then all other hadronic ratios (and yields) defined

Chemical Freeze-out temperature T_{ch} close to that of T_{pc} at top energies

$dn_i \sim e^{-(E-\mu_B)/T} d^3p$ Number of particles of a given species related to temperature

Assume all particles described by same temperature T and μ_B One ratio (e.g., \overline{p} / p) determines μ_B/T :

$$
\frac{\bar{p}}{p} = \frac{e^{-(E-\mu_B)/T}}{e^{-(E-\mu_B)/T}} = e^{-2\mu_B/T}
$$

Temperature of chemical freeze-out

dM/dy

 10^{3}

10

 10^{-1}

 10^{-3}

 10^{-5}

 10^{-7}

$$
\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E\pi)/T}
$$

But this is the T at which hadronic ratios are fixed.

What about initial T?

Suppression determined by T and binding energy

Quarkonia - QGP thermometers

Charmonia: J/ψ, Ψ', χc Bottomonia: ϒ(1S), ϒ(2S), ϒ(3S)

Color screening of static potential between heavy quarks (Matsui and Satz, *PLB* **178** (1986) 416)

Helen Caines - Yale - Midsummer QCD School - July 2024 10

Formed only in the very early stages of the collision due to their high masses

Sequential melting of quarkonia

Sequential melting of quarkonia

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies

Sequential melting of quarkonia

Lightly bound states almost completely gone Tightly bound states have mostly melted at LHC energies $T > 1.5 T_c \sim 300$ MeV

and top RHIC

Extracting the initial T: non-interacting probe

Di-leptons probe medium over its whole evolution.

Escape medium without interacting (no color charge)

e

ρ spectral function broadens when sitting in hot bath : Later time measurementmatter

Two for the price of one:

-
-
-
- Different di-lepton invariant mass ranges probe different times
- Production rate proportional to QGP temperature

: Early time measurement

Quark-gluon plasma

 e^*

Extracting the signal

Extracting the temperatures

in-medium ρ produced & broadened in similar heat bath from $\sqrt{s_{NN}}$ =17-56 GeV

Extracting the temperatures

Different medium below 20 GeV? Intermediate mass range: $T(\sqrt{s_{NN}} = 54.6) = 338 \pm 59$ MeV ~ $T(\sqrt{s_{NN}} = 27) = 301 \pm 60$ MeV $T(\sqrt{s_{NN}} = 17) \sim 246$ MeV

 in-medium ρ produced & broadened in similar heat bath from $\sqrt{s_{NN}}$ =17-56 GeV

Phase diagram summary

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR: arXiv: 2402.01998 15

How hot is ~200 MeV ?

- Liperi, July 29, 2010)
- B. Approximately that of molten gold (~1000 °C)
- C. Approximately that of the center of the sun $(\sim 15$ million $\degree C$)
- D. Approximately that of a supernova (~10 billion °C)
- E. Even hotter

A. Approximately the same as the hottest recorded T in Finland $(\sim 37.2 \text{ °C})$

How hot is ~200 MeV ?

- Liperi, July 29, 2010)
- B. Approximately that of molten gold (~1000 °C)
- C. Approximately that of the center of the sun $(\sim 15$ million $\degree C$)
- D. Approximately that of a supernova (~10 billion °C)
- E. Even hotter ~0.1 trillion ℃
	-

A. Approximately the same as the hottest recorded T in Finland (~37.2 $^{\circ}$ C

QGP: fluid or gas or plasma?

Almond shape overlap region in coordinate space

 v_1 : directed flow, v_2 : elliptic flow

QGP: fluid or gas or plasma?

Almond shape overlap region in coordinate space

Helen Caines - Yale - Midsummer QCD School - July 2024 17

Thomas - **Science** 298 **2179 (2002)**

QGP: fluid or gas or plasma?

- -
	-

Almond shape overlap region in coordinate space

Helen Caines - Yale - Midsummer QCD School - July 2024 17

Time –M. Gehm, S. Granade, S. Hemmer, K, O'Hara, J.
Time – Thomas Science 298 2179 (2002) Thomas - **Science** 298 **2179 (2002)**

Its a fluid

Helen Caines - Yale - Midsummer QCD School - July 2024 B. Schenke, C. Shen, P. Tribedy PRC 102, 044905 (2020) 18

Higher odd v_n terms dominantly due to event-by-event geometrical fluctuations

Data well described by hydrodynamical models with very low viscosity to entropy ratio

A near-perfect fluid!

Evidence for partonic degrees of freedom

Helen Caines - Yale - Midsummer QCD School - July 2024 19 STAR: PRL 95 (2005) 122301, PHENIX: PRL 98 (2007) 162301

If partons are flowing the *complicated* observed flow pattern in $v_2(p_T)$ for hadrons

$$
\frac{d^2N}{dp_T d\phi} \propto 1+2 v_2(p_T) \cos(2\phi)
$$

- should become *simple* at the quark level
- $p_T \rightarrow p_T/n$
- $V_2 \rightarrow V_2 / n$
-

Elliptic flow is additive

Evidence for partonic degrees of freedom

If partons are flowing the *complicated* observed flow pattern in $v_2(p_T)$ for hadrons

$$
\frac{d^2N}{dp_T d\phi} \propto 1+2 \nu_2(p_T) \cos(2\phi)
$$

Constituents of QGP are partons

Elliptic flow is additive

Helen Caines - Yale - Midsummer QCD School - July 2024 19 STAR: PRL 95 (2005) 122301, PHENIX: PRL 98 (2007) 162301

should become *simple* at the quark level

- $p_T \rightarrow p_T/n$
- $v_2 \rightarrow v_2 / n$
-

Charm quarks are also thermalized

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR: PRL 118 (2017) 212301 20 ordines - raie - Midsuriffier QCD SCHOOL - July 2024 Contract the Grey bands represent the estation (2017) 212301

STAR: PRL 118 (2017) 212301

Disappearance of partonic collectivity

Helen Caines - Yale - Midsummer QCD School - July 2024 21

**Partonic :
$$
\sqrt{s_{NN}} > 5
$$
 GeV**

\n**Hadron dominated : $\sqrt{s_{NN}} < 3.2$ GeV**

Fails at $\sqrt{s_{NN}}$ = 3.2 GeV and lower

Gradually restores up to $\sqrt{s_{NN}}$ = 4.5 GeV

Evident from $\sqrt{s_{NN}}$ = 7.7 GeV onwards

Simple but elegant analysis

 $c_s^2 = \frac{dP}{d\varepsilon} = \frac{d\ln T}{d\ln s} = \frac{d\ln \langle p_T \rangle}{d\ln N_{ch}}$

Focus on ultra-central events - avoid geometry fluctuations

Speed of sound in QGP
Simple but elegant analysis

Focus on ultra-central events - avoid geometry fluctuations

Helen Caines - Yale - Midsummer QCD School - July 2024 CMS: [Rep. Prog. Phys. 87 \(2024\) 077801](http://dx.doi.org/10.1088/1361-6633/ad4b9b) 22

Data in excellent agreement with IQCD EoS

Speed of sound in QGP

New data from ALICE suggest picture might be a bit more complicated

Is there a Critical Point?

Back to the phase diagram

Helen Caines - Yale - Midsummer QCD School - July 2024 24

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

(δ*N*) 2

 $SO \approx$ χ_B^- 3 $\chi_B^ \frac{B}{2}$, KO

Searching for a Critical Point

Critical Points:

divergence of susceptibilities e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Lattice QCD**:**

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Divergences of conserved quantities may $\frac{9}{5}$ ¹⁰³ survive in the final state

Non-gaussian fluctuations of net-baryon density

Searching for a Critical Point

Critical Points:

divergence of susceptibilities e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Lattice QCD**:**

Searching for CP

Particle number density, $N/V = n_k(T, \mu_k) =$

Theoretically susceptibilities of conserved quantities (B,Q,S) can be calculated :

 $\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} (p/T^4)}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$

Focus on net-proton as proxy for net-baryon

$$
= \frac{d_k}{(2\pi)^3} \int d^3 \vec{p} \frac{1}{(-1)^{B_k+1} + \exp((\sqrt{\vec{p}^2 + m_k^2} - \mu_k)/T)} = (\partial p / \partial \mu)
$$

 $\delta N = N - \langle N \rangle$

mean: $M = \langle N \rangle = VT^3 \chi_1,$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = VT^3 \chi_2$, skewness: $S = \frac{\langle (\delta N)^3 \rangle}{\sigma^3} = \frac{VT^3 \chi_3}{(VT^3 \chi_3)^{3/2}},$ Take ratios to remove volume and T dependence $kurtosis: \kappa = \frac{\langle (\delta N)^4 \rangle}{4} - 3 = \frac{VT^3 \chi_4}{4}$

Experiment measure event-by-event distribution of conserved quantities

Searching for CP

Particle number density, $N/V = n_k(T, \mu_k) =$

Theoretically susceptibilities of conserved quantities (B,Q,S) can be calculated :

 $\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} (p/T^4)}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$

Focus on net-proton as proxy for net-baryon

Kurtosis x Variance² ~ $\chi^{(4)}/\chi^{(2)}$ (Kurtosis - 4th moment - "tailiness" of distribution)

Helen Caines - Yale - Midsummer QCD School - July 2024 M. Stephanov. PRL 107:052301(2011) 26

$$
= \frac{d_k}{(2\pi)^3} \int d^3 \vec{p} \frac{1}{(-1)^{B_k+1} + \exp((\sqrt{\vec{p}^2 + m_k^2} - \mu_k)/T)} = (\partial p / \partial \mu)
$$

 $\delta N = N - \langle N \rangle$

mean: $M = \langle N \rangle = VT^3 \chi_1,$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = VT^3 \chi_2$, skewness: $S = \frac{\langle (\delta N)^3 \rangle}{\sigma^3} = \frac{VT^3 \chi_3}{(VT^3 \chi_3)^{3/2}},$ Take ratios to remove volume and T dependence $kurtosis:$ $\kappa = \frac{\langle (\delta N)^4 \rangle}{\sigma^4} - 3 = \frac{VT^3 \chi_4}{(VT^3 \chi_5)}$

Experiment measure event-by-event distribution of conserved quantities

Presence of Critical Point? the $4-1$ th moment of the baryon number fluctuations between \mathcal{A} the baryon number fluctuations because \mathcal{A} ζ , as the critical decrease, possibly turning negative, as the critical decrease, as the critical decrease, as the critical decrease, ζ point is a point in Ref.[10] is a point in Ref.[10] is a point in Ref.[10]. In Ref.[10] is a point in Ref.[10]
[10] is a point in Ref.[10] is a point in

- Another observation, which we shall return to at the end of the next section, is the next section, is the next section, is that $\mathcal{A} = \mathcal{A} + \mathcal{A}$
- diverge → $\begin{CD} \rightarrow \mathbb{R}^n \rightarrow \mathbb$
- Net-p κσ² diverge in this direction is a very reduced to the Net-point will move in this direction is a very reduced to the Net-point will move in the Net-point will move in the Net-point will move in the Net-point will the size of the colliding nuclei or selects more peripheral

UrQMD (no Critical Point): shows suppression at lower energies - due to baryon number conservation $p \in \mathbb{R}$ UI QIVID (110 GIILICAI FOIIII). ALS ALSO IN FIGHTING CONSULTED THE DEPTH OF ALSO ALL ALONG ALONG ALONG ALL ALONG ALONG ALONG ALONG ALONG ALONG ALONG ALONG ALL ALL ALONG ALL ALONG ALL A

Helen Caines - Yale - Midsummer QCD School - July 2024

Presence of Critical Point? the $4-1$ th moment of the baryon number fluctuations between \mathcal{A} the baryon number fluctuations because \mathcal{A} ζ , as the critical decrease, possibly turning negative, as the critical decrease, as the critical decrease, as the critical decrease, ζ point is a point in Ref.[10] is a point in Ref.[10] is a point in Ref.[10]. In Ref.[10] is a point in Ref.[10]
[10] is a point in Ref.[10] is a point in

Top 5% central collisions: Non-monotonic behavior Enhanced p⊤ range → enhanced signal Not see in peripheral data $\mathcal{L} = \mathcal{L}$, and denote the density plot of the function $\mathcal{L} = \mathcal{L}$, and the function $\mathcal{L} = \mathcal{L}$ parameter model in model in the 17 state model in the 18 state model we out in purpour de la de

- Another observation, which we shall return to at the end of the next section, is the next section, is the next section, is that $\mathcal{A} = \mathcal{A} + \mathcal{A}$
- diverge → $\begin{CD} \rightarrow \mathbb{R}^n \rightarrow \mathbb$
- Net-p κσ² diverge in this direction is a very reduced to the Net-point will move in this direction is a very reduced to the Net-point will move in the Net-point will move in the Net-point will move in the Net-point will

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR: PRL 126 (2021) 92301, PRC 104 (2021) 024902, PRL 127 (2021) 262301, PRL 128 (2022) 202303 27 $92301,$ PRC 104 (2021) 024902 , PRL 121 (2021) 202301, PRL 120 (2022) 202303 21 STAR: PRL **126** (2021) 92301, PRC **104** (2021) 024902 , PRL **127** (2021) 262301, PRL **128** (2022) 202303

UrQMD (no Critical Point): shows suppression at lower energies - due to baryon number conservation $p \in \mathbb{R}$ UI QIVID (110 GIILICAI FOIIII). ALS ALSO IN FIGHTING CONSULTED THE DEPTH OF ALSO ALL ALONG ALONG ALONG ALL ALONG ALONG ALONG ALONG ALONG ALONG ALONG ALONG ALL ALL ALONG ALL ALONG ALL A

Helen Caines - Yale - Midsummer QCD School - July 2024

Hints of Critical fluctuations More data needed end of Critical fluctuations as interest sections as interest sections as a meta $t \rightarrow$ $t \rightarrow 0$ $t \rightarrow 0$ $t \rightarrow 0$ or $\rightarrow 0$ or $\rightarrow 0$ diagram in Fig. 1.000 phase diagram the USD phase diagram the Diagram of the One of the One of the QUD phase diagram the Diagram of the Diagram of the One of the Diagram of the Diagram of the Diagram of the Diagram of the

Presence of Critical Point? the $4-1$ th moment of the baryon number fluctuations between \mathcal{A} the baryon number fluctuations because \mathcal{A} ζ , as the critical decrease, possibly turning negative, as the critical decrease, as the critical decrease, as the critical decrease, ζ point is a point in Ref.[10] is a point in Ref.[10] is a point in Ref.[10]. In Ref.[10] is a point in Ref.[10]
[10] is a point in Ref.[10] is a point in

Top 5% central collisions: Non-monotonic behavior $Enhanced$ p_T range \rightarrow enhanced signal Not see in peripheral data $\mathcal{L} = \mathcal{L}$, and denote the density plot of the function $\mathcal{L} = \mathcal{L}$, and the function $\mathcal{L} = \mathcal{L}$ $\texttt{Ennanced}$ \texttt{p}_T range \rightarrow enhanced sign parameter model in model in the 17 state model in the 18 state model we out in purpour de la de

- Another observation, which we shall return to at the
- diverge →
- Net-p κσ² diverge in this direction is a very reduced to the Net-point will move in this direction is a very reduced to the Net-point will move in the Net-point will move in the Net-point will move in the Net-point will

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR: PRL 126 (2021) 92301, PRC 104 (2021) 024902, PRL 127 (2021) 262301, PRL 128 (2022) 202303 27 $92301,$ PRC 104 (2021) 024902 , PRL 121 (2021) 202301, PRL 120 (2022) 202303 21 STAR: PRL **126** (2021) 92301, PRC **104** (2021) 024902 , PRL **127** (2021) 262301, PRL **128** (2022) 202303

BES-II data released this month

BES-II data released this month

Helen Caines - Yale - Midsummer QCD School - July 2024 28

Can we understand the nature of parton interactions with the QGP?

How do partons interact with the QGP?

Helen Caines - Yale - Midsummer QCD School - July 2024

No "Effect":

 R < 1 at small momenta production from thermal bath

 R = 1 at higher momenta where hard processes dominate

Average number of p+p collisions in A+A collision

c - Innoversion of proposition and $\frac{1}{2}$ Helen Caines - Yale - Midsummer QCD School - July 2024 31

nuclear modification factor for gauge bosons Strong "jet quenching" observed

c - Innoversion of proposition and $\frac{1}{2}$ Helen Caines - Yale - Midsummer QCD School - July 2024 31

nuclear modification factor for gauge bosons Strong "jet quenching" observed

What about charmonia?

Helen Caines - Yale - Midsummer QCD School - July 2024

Much more suppression at RHIC than at the LHC!

What about charmonia?

Helen Caines - Yale - Midsummer QCD School - July 2024

J/ψ melts but also regenerates ,

RHIC much less regeneration in the medium (only a few c quarks created, once melted don't reform)

Much more suppression at RHIC than at the LHC!

What about looking at jets?

Can we restore "quenched" energy by looking at jets? Study nuclear modification factor (RAA) of jets

p and E MUST be conserved even with quenched jets

Helen Caines - Yale - Midsummer QCD School - July 2024 **33** ATLAS: PLB 790 (2019) 108

What about looking at jets?

Can we restore "quenched" energy by looking at jets? Study nuclear modification factor (RAA) of jets

Compensating effects of higher E_{loss} and flatter p_T spectrum

Quenched energy not recovered

$R_{AA}(5 \text{ TeV}) \sim R_{AA}(2.76 \text{ TeV})$

p and E MUST be conserved even with quenched jets

ATLAS: PLB 790 (2019) 108

Opaqueness/stopping power of QGP

Measure fractional momentum loss $\delta p_T / p_T$ instead of R_{AA}

Helen Caines - Yale - Midsummer QCD School - July 2024 **34 ATLAS: PLB 846 (2023) 138154**

Opaqueness/stopping power of QGP

Opaqueness/stopping power of QGP

So what is happening?

Helen Caines - Yale - Midsummer QCD School - July 2024 35

Jet quenching understood to arise from elastic and inelastic interactions of partons with QGP, with coherence effects playing an important role

Where does the energy go?

Helen Caines - Yale - Midsummer QCD School - July 2024 CMS: PRL121, (2018) 242301 36

"Lost" hard particles emerge as multiple soft particles

- Jet substructure is highly modified
- Particles emerge at large R and low p_T
- Reconstruct jet recoiling from high p_T photon
- since photons don't interact "know" initial parton energy
- Examine fragmentation hadrons

$$
\xi_T^{\gamma} = \ln\left[-|\vec{p}_T^{\gamma}|^2/(\vec{p}_T^{\text{trk}} \cdot \vec{p}_T^{\gamma})\right]
$$

- take ratio Pb+Pb/p+p

Determining QGP transport properties

Advances continue - especially via JETSCAPE (but not only) - exploit bayesian inference

- $\frac{\lambda}{\lambda}$ $q = Q^2/L$ Q - mtm transfer to medium L - path length
- Most precise estimate to-date

Now includes jet RAA and substructure measurements

Does the T evolution explain differences at RHIC and the LHC?

Determining QGP transport properties

Helen Caines - Yale - Midsummer QCD School - July 2024 37

Advances continue - especially via JETSCAPE (but not only) - exploit bayesian inference

Now includes jet RAA and substructure measurements

- $\frac{\lambda}{\lambda}$ $q = Q^2/L$ Q - mtm transfer to medium L - path length
- Most precise estimate to-date

Some tension when include hadron RAA

Some physics missing? Uncertainties incorrect? Theory uncertainty critical? All of the above?

Does the T evolution explain differences at RHIC and the LHC?

Unexpected physics found along the way

Is charm fragmentation universal?

Helen Caines - Yale - Midsummer QCD School - July 2024 ALICE: PRD 105, L011103 (2022) 39

 $f(c \rightarrow H_c)$ from p+p collisions different to $e^+e^$ and ep data

> Assumption of universal (charm) fragmentation is not valid

Note: LHC cc cross-section is consistent with pQCD predictions (although at upper limit)

>3x more charm baryons than than in e+e– and ep

FF: typically parametrized from e^{+e-} / ep measurements Assumption that charm hadronization universal

Heavy-flavor yields computed in pQCD via convolution of

PDFs + partonic cross-section + FF

First observation of anti-He4!

Matter and antimatter formed at same rate

Now know rates we should see anti-matter in space experiments

Fact that we are in a matter Universe not due to "problem" creating anti-matter

Helen Caines - Yale - Midsummer QCD School - July 2024 5TAR: Nature 473 (2011) 353

Helen Caines - Yale - Midsummer QCD School - July 2024 41

(anti)Hypernuclei are also created

Anti-Hyper-Hydrogen-4

Evidence of formation of excited hypernuclei states in heavy ion collisions

n

n

^p ^Λ

- FO

 $-\frac{1}{2}$

Hyper-Helium-4 lifetime measurement in heavy ion collisions

f0(980) quark content

Longstanding question "is the f_0 a diquark, molecular, or tetraquark?"

 Difficult/impossible question to answer theoretically - up to experiments to answer

f0(980) quark content

Longstanding question "is the f₀ a diquark, molecular, or tetraquark?"

Difficult/impossible question to answer

Helen Caines - Yale - Midsummer QCD School - July 2024 42

What carries baryon number?

Baryon-junction as baryon carrier?

¹ Quarks as baryon carriers? **(2005) 1, 123 1/3 1/3**

fig: Suganuma et al. AIP Conf.Proc. 756

If baryon number carried by: Valence quarks - B/Q = A/Z Baryon junctions - B/Q > A/Z

Use Isobar data from STAR:

Ru+Ru: A = 96, Z = 44
\nZr+Zr: A = 96, Z = 40
\nB =
$$
(N_p - N_{\bar{p}}) + (N_n - N_{\bar{n}})
$$

\nQ = $(N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})$
\nΔQ = Q_{Ru} - Q_{Zr} Measure B/ΔQ
\nΔZ = Z_{Ru} - Z_{Zr} Calculate ΔZ/A

Helen Caines - Yale - Midsummer QCD School - July 2024 43

What carries baryon number?

¹ Quarks as baryon carriers?

If baryon number carried by: Valence quarks - B/Q = A/Z Baryon junctions - B/Q > A/Z

Use Isobar data from STAR:

$$
Ru+Ru: A = 96, Z = 44
$$

Zr+Zr: A = 96, Z = 40

$$
B = (N_p - N_{\bar{p}}) + (N_n - N_{\bar{n}})
$$

$$
Q = (N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})
$$

$$
ΔQ = Q_{Ru} - Q_{Zr}
$$
 Measure B/ΔQ
ΔZ = Z_{Ru} - Z_{Zr} Calculate ΔZ/A

Small system complexity

Clear collective motion signals now observed at LHC and RHIC Intermediate p_T - NCQ scaling

Initially thought p+A - "cold" matter baseline

Small system complexity

Clear collective motion signals now observed at LHC and RHIC Intermediate p_T - NCQ scaling

Initially thought p+A - "cold" matter baseline

Do we make a very small QGP in more central p+A events?

Helen Caines - Yale - Midsummer QCD School - July 2024 **44** AILAS: PRL 131 (2023) 072301

No clear signs of jet quenching reported

ATLAS: PRL 131 (2023) 072301

The spinning QGP

How does that affect fluid/transport? Vorticity - local spinning motion

- $|L| \sim 10^5$ in peripheral collisions
- We generate a "spinning" QGP?
- Spectators create a large magnetic field

Viscosity dissipates vorticity to fluid at larger scales

Can we see any manifestation of this in the data?

^B ⇠ ⁰*.*¹ ⁰*.*5 T *^B* ⇠ ¹⁰¹¹ ^T Λ anti-aligned, anti-Λ aligned with L → μH - B coupling

Important Features in the fe **Measuring Λ Global Polarization**

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014) Λ Polarization Self analyzing Decay p preferentially_Demitted in A spin direction Decay anti-proton preferentially emitted against anti-Λ spin direction

• Sigma feed^{typiga} **Partitole poter trattene**ct

• Sigma feed-down goes with the primaries

Helen Caines - Yale - Midsummer QCD School - July 2024 46

Global polarization (alignment of spin with collision system angular momentum)

Strong magnetic field Direction of L: Estimate from 1st order reaction plane

Highly vortical fluid: ω ~10²² s⁻¹

Global Λ polarization

Precision measurements have now been made from 3-5000 GeV:

Highly vortical fluid: $ω \sim 10^{22}$ s⁻¹

Global Λ polarization

Precision measurements have now been made from 3-5000 GeV:

How fast is that compared to the most powerful tornado?

a) slower

b) about the same

c) 1000 times faster

d) billion times fast

e) even faster

Highly vortical fluid: $ω \sim 10^{22}$ s⁻¹

Global Λ polarization

Precision measurements have now been made from 3-5000 GeV:

How fast is that compared to the most powerful tornado?

a) slower

b) about the same

c) 1000 times faster

d) billion times fast

e) even faster

ten billion trillion times faster

Splitting of hyperon polarization

Helen Caines - Yale - Midsummer QCD School - July 2024 48

Late stage magnetic field should cause splitting in (anti)Λ polarization

No splitting observed over wide range of beam energies

 $B(19.6$ GeV) < 9.4×10^{12} T (Initial field 1014-1016 T)

At 95% confidence level late stage magnetic field

(27 GeV)< 1.4x1013

Does magnetic field die away too quickly? Can we probe at earlier time?

Can we detect new physics via UPC?

UPC: Explosion in studies over past 10 Years

2017: Light-by-Light

2021: Breit-Wheeler

OUTPUTS FROM PHYSICAL REVIEW LETTERS

Open Access | Published: 14 August 2017

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration

Nature Physics 13, 852-858 (2017) Cite this article

41k Accesses | 185 Citations | 521 Altmetric | Metrics

2023: Entanglement **Enabled Interference**

Science Advances

NAAAS

Tomography of ultrarelativistic nuclei with polarized photongluon collisions

erview of attention for article published in Science Advances, January 2023

Scientists See Quantum Interference between Different Kinds of Particles for First Time

A newly discovered interaction related to quantum entanglement between dissimilar particles opens a new window into the nuclei of atoms

of 37,322 outputs

Exploiting both γγ and γ-A collisions

Evidence for gluon saturation

- J/ψ photo-production:
- CMS (and ALICE) recently accessed new W (photon-nucleon CM) range
	- Shape of coherent $\sigma_{\gamma A\rightarrow J/\psi A'}(W)$ not predicted
- by models
	- Gluon saturation? black disk limit?

Evidence for gluon saturation

Suppression of di-π⁰ correlations in p+A - Dependence on A as predicted - No broadening, not as predicted

Hints of saturation at RHIC and LHC

- J/ψ photo-production:
- CMS (and ALICE) recently accessed new W (photon-nucleon CM) range
	- Shape of coherent $\sigma_{\gamma A\rightarrow J/\psi A'}(W)$ not predicted
- by models
	- Gluon saturation? black disk limit?

Anomalous magnetic moment of τ lepton

Recent a_{μ} (a_l = 1/2(g - 2)l) measurements challenge SM predictions.

If new physics and due to massive new particle, then τ would be much more sensitive

From p+p:

 $a_r = 0.0009 + 0.031 - 0.0021$

(consistent with SM)

 First uses of hadron-collider data to test EM properties of τ Results are competitive with existing lepton-collider constraints

Wealth of high quality data across $\sqrt{s_{NN}}$, species and centralities has conclusively shown that a QGP is formed are allowing detailed studies that highlight underlying physics we could previously gloss over

We have uncontrovertibly established that: - the QGP is a dense and opaque and initially very how

-
- the QGP is highly vortical
-
- the relevant degrees of freedom are those of quarks and gluons
- chemical freeze out

- the QGP flows almost as a perfect liquid (very small shear and bulk viscosity) - equilibration/thermalization is first achieved in the QGP and persists through to

Summary

Much is now understood about this unique state of matter

Bright future ahead Next few years: New data from sPHENIX, STAR forward, LHC Run-3 Next-to-Next few years: EIC, ALICE-3, and CBM@FAIR

Of the open questions that remain are: - What are the minimal conditions to create a QGP?

- Is there a Critical Point in the QCD phase diagram?
- Can we see evidence of chiral restoration?
- Can we determine additional properties such as its heat capacity, compression modulus, electric conductivity, color conductivity?
- What is the magnitude of the initial magnetic field?
- How is baryon number carried?

Outlooks

Lots left to discover!

Timeline of a heavy-ion collision

Relativistic Heavy-Ion Collisions

Helen Caines - Yale - Midsummer QCD School - July 2024 55

final detected particle distributions mm free streaming τ ~ 10^{15} fm/c

Can only measure final state particles and photons

How to probe the earlier stages?

The phase transition in the laboratory

Chemical freeze-out: $(T_{ch} \leq T_c)$: inelastic scattering ceases Kinetic freeze-out:

 $(T_{fo} \leq T_{ch})$: elastic scattering ceases

Energy density is a necessary but **not** sufficient condition

 $\varepsilon(\sqrt{s} = 7 \text{ TeV pp LHC}) >>$ ε (\sqrt{s} =200 GeV Au-Au RHIC)

Thermal Equilibrium \Rightarrow

Chemical freeze-out: $(T_{ch} \leq T_c)$: inelastic scattering ceases Kinetic freeze-out: $(T_{fo} \leq T_{ch})$: elastic scattering ceases

The phase transition in the laboratory

many constituents

Ţch

Ζ

Helen Caines - Yale - Midsummer QCD School - July 2024 57 $b = 0$ Midsummer OCD School - July 2024 t_{max} and t_{max} density predicted to be achieved in be achieved in the achieved in th

Varying trajectory through the phase diagram?

With BES-II statistics and new TPC acceptance can explore rapidity dependence

Helen Caines - Yale - Midsummer QCD School - July 2024 58

Next step: Compare mid-rapidity/low $\sqrt{s_{NN}}$ and high rapidity/high $\sqrt{s_{NN}}$

Chemical freeze-out parameters match but initial conditions differ. Can we see the difference imprinted elsewhere?

Small strangeness correlation radius preferred $r_c \leq 4.2$ fm

- Things change at $\sqrt{s_{NN}} = 3$ GeV
	- Collision energy:
		- below threshold for Ξ
		- very close to threshold for φ

Probing (grand)canonical production

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR: PLB 831 (2022) 137152 59

Local treatment of strangeness conservation crucial

CE cannot simultaneously describe φ/K− and φ/Ξ− ratios significant change in strangeness production at this low energy

 T_{ch} = 72.9 MeV and μ_B =701.4 MeV

Resonance/nonresonance probes hadronic phase between chemical and kinetic freeze-out

rescattering cross-section also important

Helen Caines - Yale - Midsummer QCD School - July 2024 60

Fermi-Landau initial conditions with ideal hydro expansion : $c_s^2 = \frac{\partial P}{\partial \epsilon}$ Fermi-Landau initial conditions I a sharp phase transition c_s^2 = 0 for a sharp phase transition

10 10²

 $p(\mathbf{\hat{e}})$ ie $\mathbf{\hat{e}}_s^2$ Softest Point: minimum in 632

0.2

Softe¹⁰ 10² **Dale Observable**

 $\mathbf{s}_\mathsf{NN}^{\vphantom{\dag}}$ [GeV]

$$
\frac{dn}{dy} = \frac{Ks_{NN}^{1/4}}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{y^2}{2\sigma_y^2}} \quad \sigma_y^2 = \frac{8}{3} \frac{c_s^2}{1 - c_s^4} \ln\left(\frac{\sqrt{s}}{2m_N}\right)
$$
\nMinimum observed at $\sqrt{s} = \approx 7$ GeV

Minimum observed at $\sqrt{s} = -7$ GeV Minimum in the speed of sound? c_s^2 ~ 0.26

> E895: J. L. Klay et al, PRC 68, 05495 (2003) NA49: S. V. Afanasiev et al. PRC 66, 054902 (2002) BRAHMS: I.G. Bearden et al., PRL 94, 162301

Indication of softening of EoS?

NA61/SHINE see minima in similar place for pp data

Confirm c_s in other ways?

Helen Caines - Yale - Midsummer QCD School - July 2024 61

Significant enhancement above cocktail

-
- Intermediate mass range LMR and IMR

Low mass range Clear enhancement for

 $\alpha \sim 0$ concerved at $\alpha \sim 1$ Helen Caines - Yale - Midsummer QCD School - July 2024 62

Significant enhancement above cocktail

Estimating the initial temperature

Helen Caines - Yale - Midsummer QCD School - July 2024 63

Direct Photons:

- no charge or color \longrightarrow don't interact with medium
- emitted over all lifetime \rightarrow convolution of all T

HIC: surpass critical temperature

Helen Caines - Yale - Midsummer QCD School - July 2024 64 DELENIV. POI 104 (2010) 132301

After background subtraction:

Emission rate and shape consistent with that from a hot thermally equilibrated medium

> Hydro models fit to data TRHIC = 300 - 600 MeV $> 2 \times T_c$ $T = 0.15 - 0.6$ fm/c

Large uncertainty due to correlated pair background i.e. jets

HIC: surpass critical temperature

After background subtraction:

Emission rate and shape consistent with that from a hot thermally equilibrated medium

> Hydro models fit to data TRHIC = 300 - 600 MeV $> 2 \times T_c$ $T = 0.15 - 0.6$ fm/c

Large uncertainty due to correlated pair background i.e. jets

PHENIX: PRL 104 (2010) 132301

Helen Caines - Yale - Midsummer QCD School - July 2024 64

Presence of a Critical Point?

Critical Points: divergence of susceptibilities

e.g. magnetism transitions

In HI:

STAR: PRL **126** (2021) 92301 $STAR: PRL 127 (2021) 262301$ $\begin{array}{c|c|c|c|c} \hline \texttt{STAR} & \texttt{PRI} & \texttt{126 (2021) 02301} \end{array}$

Large event-by-event fluctuations of conserved quantities (Q,B S) as the nonequilibrium correlation length, ξ, diverges

and divergence of correlation lengths e.g. critical opalescence

Correlation lengths diverge →

Net-p κσ2 diverge

Net-proton cummulants at LHC

Lattice calculations suggest susceptibilities sensitive to initial EM field $\frac{1.6}{1}$ H.-T. Ding et al., arXiv:2208.07285

Net-proton cummulants at LHC

Lattice calculations suggest susceptibilities sensitive to initial EM field

> First measurement above 2 GeV/c Fluctuation in high p range increases in peripheral events - B-field largest

Helen Caines - Yale - Midsummer QCD School - July 2024 66

More discussion with theory and measurement in pp needed

Nuclear modification of light species

energy and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$

ρ that energy is the vertical uncertainty bars corresponding to ρ and ρ $S_{\text{max}} > 776$ (FeV sustematical uncertainties S_{max} uncertainties. The contract of position was within 1 cm of the mean transverse position was within 1 cm of the mean transverse position in th
The mean transverse position in the mean transverse position in the mean transverse position in the mean trans r For $\sqrt{s_{NN}} > 27$ GeV suppression observed was less than 1 cm, they had greater than 15 points means than 15 points means than 15 points means than 15 poi
They had greater than 15 points means than 15 points means than 15 points means than 15 points means than 15 p

Helen Caines - Yale - Midsummer QCD School - July 2 ing ecoefficiency was then taken as the weighted average of the weighted average of the weighted average of th
The weighted average of the weighted average of the weighted average of the weighted average of the weight of

metric collisions between heavy and light nuclei, where α is a collision of α in α in α

Nuclear modification of light species

Several physical e

tion in specific kinematic ranges, concealing the turn-o↵

metric collisions between heavy and light nuclei, where α is a collision of α in α in α

of the suppression due to just the suppression due to just the suppression due to just the suppression of the s
The suppression due to just the suppression due to just the suppression of the suppression of the suppression

↵ect

ρ that energy is the vertical uncertainty bars corresponding to ρ and ρ $S_{\text{max}} > 776$ (FeV sustematical uncertainties S_{max} uncertainties. The contract of r For $\sqrt{s_{NN}} > 27$ GeV suppression observed was less than 1 cm, they had greater than 15 points means than 15 points means than 15 points means than 15 poi
They had greater than 15 points means than 15 points means than 15 points means than 15 points means than 15 p

der to prevent split tracks. The *p*^T and species depen-

dent tracking eciencies in the TPC were determined

by propagating Monte Carlo tracks through a simulation \mathcal{M}

energy and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$

Fifter and the measurement of the measurement of the measurement of the measurement of the measurement the BES, *p* + *p* and *p* (*d*)+Au. sured in the TPC out of a maximum of 45, and the numand macane in the points used in the points used in the set of the Differences for baryons and mesons

Helen Caines - Yale - Midsummer QCD School - July 2 ing ecoefficiency was then taken as the weighted average of the weighted average of the weighted average of th
The weighted average of the weighted average of the weighted average of the weighted average of the weight of

Nuclear modification of light species 4

ρ that energy is the vertical uncertainty bars corresponding to ρ and ρ $S_{\text{max}} > 776$ (FeV sustematical uncertainties S_{max} uncertainties. The contract of r For $\sqrt{s_{NN}} > 27$ GeV suppression observed was less than 1 cm, they had greater than 15 points means than 15 points means than 15 points means than 15 poi
They had greater than 15 points means than 15 points means than 15 points means than 15 points means than 15 p

Fifter and the measurement of the measurement of the measurement of the measurement of the measurement the BES, *p*+*p* and *p*(*d*)+Au. sured in the TPC out of a maximum of 45, and the numand macane in the points used in the points used in the set of \sim Differences for baryons and mesons

Several physical e \sim Several physical enhance hadron produced enhance hadron produced enhance hadron production in specific the indicate ϵ of the support of the der to prevent split tracks. The *p*^T and species depenec not horvon/mocon offo New ϕ data indicate mass not baryon/meson effect? I How to disentangle?

Helen Caines - Yale - Midsummer QCD School - July 2024 67 ing economic was then taken as the weighted average of the weighted average of the weighted average of the wei
The weighted average of the weighted average of the weighted average of the weighted average of the weight of

metric collisions between heavy and light nuclei, where α is a collision of α in α in α

energy and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$ and centrality $\mathcal{S}(\mathcal{S})$

Is flow hiding Eloss?

Precision quenching measurements

 $\sqrt{ }$

 \bigtriangledown

part /

 $R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \times \langle N_{coll} \rangle}$

R_{AA} in 0-60% central events (Npart>20) decrease with Npart

Same RAA at same N_{part} regardless of system

Deviation from trend starting at $N_{part} \leq 20$ Event selection bias in peripheral events causes artificial suppression? - HG-PYTHIA qualitatively gets trend but predicts steeper drop

Jet quenching linear with $log(N_{part})$

Helen Caines - Yale - Midsummer QCD School - July 2024 68 (2000), THE 21, 072004 (2000), 68 STAR: PRL 91, 172302 (2003), PRL 91, 072304 (2003), PRC 81, 054907 (2010) Loizides & Morsch, PLB 773 (2017) 408-4

- Lost jet energy generates diffusion wake
- —> Depleted particle production in γ direction
- —> Wake larger when xJ smaller
- At 95% CL wake < 0.8% perturbation of bulk
- (note CoLBT predicts 0.2%)

Diffusion Wake or Not? Diffusion Wake Search in +jets (II) <u>ATLAS - ATLAS - ATLAS</u>

Lost jet energy generates diffusion wake —> Depleted particle production in γ direction —> Wake larger when xJ smaller At 95% CL wake < 0.8% perturbation of bulk

(note CoLBT predicts 0.2%)

Hellen What is wake and what's soft gluon emission and merged the control of the contro Christopher McGinn 18, 2002, 2003, 2003, 2003, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 200
Christopher McGinn 18, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 200 Different sensitivities? Proposal better to look at groomed substructure?

Diffusion Wake or Not? Diffusion Wake Search in +jets (II) <u>ATLAS - ATLAS - ATLAS</u>

Jets recoiling off of a high p_T trigger hadron

No observable *xJ* dependence in yield within oriape of the position of a Maliare Change Shape of IAA best reproduced when wake included Shape not sensitive to Moliere/elastic scattering

γ-jet: Use photon to select initial not quenched energy Balanced x_J: Bias towards jets with E_{Loss}=0, wide R_g jets disfavored

"All" x_J: No biasing on amount of E_{Loss}, no R_g dependence in PbPb/pp ratio

Selection Bias Rather Than Decoherence?

Selection Bias Rather Than Decoherence?

Inclusive: select via jet p_T after quenching Balanced x_J: Bias towards jets with E_{Loss}=0, wide R_g jets disfavored

- "All" x_J: No biasing on amount of E_{Loss}, no R_g dependence in PbPb/pp ratio
	-
	-
- Inclusive jet: wide R_g jets disfavored. E_{Loss} higher so shifted to lower jet p_T
- Helen Caines Yale Midsummer QCD **School July 2001 12 and School July 202** M. Park M. Park 70 Now we know there is a bias, can we use it to

Where does lost energy go?

Helen Caines - Yale - Midsummer QCD School - July 2024 5TAR:PRL 112 (2014) 122301 71

Helen Caines - Yale - Midsummer QCD School - July 2024 STAR:PRL 112 (2014) 122301 71

Where does lost energy go?

Probing energy flow in jets

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Scaling by jet p_T : universal transition point - HF jets' transition point affected deadcone

Probing energy flow in jets

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Scaling by jet p_T : universal transition point - HF jets' transition point affected deadcone

Probing energy flow in jets

Helen Caines - Yale - Midsummer QCD School - July 2024 72

N-point Energy Correlators

Perturbative region grows as jet p_T increases

Ratio of 3-point/2-point correlators:

consistent with running of α^s

Sensitivity to medium effects

How does more realistic simulation look?

Helen Caines - Yale - Midsummer QCD School - July 2024 73

First study using static toy model and no background θc - decoherence angle, θL - where formation time longer than L $\theta_L \ll \theta_c (E \gg \hat{q}L^2)$ $\theta_L \gg \theta_c (E \ll \hat{q}L^2)$

Medium-induced radiation effects only at small angles θonset independent of q

Collaborations hard at work on these measurements, expect first results soon

Directed flow difference

Has species dependence - transported vs created duarks Difference in particle-anti-particle slope: Increases with decreasing centrality - Higher B-field Increases with decreasing beam energy - Increasing crossing time Has species dependence - transported vs created quarks

Speed of Sound: ALICE

Summary plot of extracted c_s^2 with different centrality estimators and various η separations between particles used for $\langle p_{\rm T} \rangle$ and centrality

The extraction is heavily dependent on the choice of centrality estimator A significant difference in forward versus midrapidity centrality determination and from the bias of the centrality estimator

What carries the baryon number?

Study photonuclear events: Very clean process

Baryon number in 3 valence quarks - no stopped baryons Baryon junctions - produce midrapidity proton

Baryon-junction as baryon carrier?

fig: Suganuma et al. AIP Conf.Proc. 756

What carries the baryon number?

Study photonuclear events: Very clean process

Baryon number in 3 valence quarks - no stopped baryons

Baryon junctions - produce midrapidity proton

Baryon-junction as baryon carrier?

fig: Suganuma et al. AIP Conf.Proc. 756

Path towards a microscopic understanding of what carries baryon number & how it is stopped

Helen Caines - Yale - Midsummer QCD School - July 2024 76

stronger rapidity dependent stopping in γ+Au than peripheral Au+Au at approximately same multiplicity

Emall evetom flow **Small system flow**

ALI-PREL-543472

Low p_T - mass ordering

Intermediate p_T - NCQ scaling

B. Schenke, M.Zhao

Emall evetom flow **Small system flow**

ALI-PREL-543472

to use of different rapidity ranges

Helen Caines - Yale - Midsummer QCD School - July 2024 Relen Caines - Yale - Midsummer QCD School - July 2024

Substructure of oxygen

Helen Caines - Yale - Midsummer QCD School - July 2024 78

$v_2\{2\}$ - sensitive to fluctuations

 $v₂{4}$ - reduced sensitivity to fluctuations

Data: in central event but fluctuations enhanced, (v₂ reduced overall)

Theory: Alpha clusters enhance fluctuations

Data strongly favor alpha-clustering

Energy loss vs energy density

Given number of approximations reasonably reasonable correlation between E_{Loss} and ε_{init} over different species and collision energies

- Link between entropy and charged particle density very sensitive to viscosity.
- Maybe worth more careful calculation?

$$
\epsilon_{init} = 3/4 \, \text{Sinit} \, \text{Tint}
$$

More details on estimates see 2308.05743 J. Harris & B. Muller

Helen Caines - Yale - Midsummer QCD School - July 2024 T. Hachiya, S. Schlichting 79

- E_{Loss} from: shift of p_T spectra
- Approximate energy density from:
- $dN_{ch}/d\eta \longrightarrow dS/dy \longrightarrow s_f \tau_f = dS/dy/A\tau = s_{init} \tau_{init}$

Energy loss to p(d)-Au medium?

0

xp, *x*Pb 1. 7 1.6 **Energy loss to p(d)-Au medium?**

Helen Caines - Yale - Midsummer QCD School - July 2024 80

Nuclear modification of jets

- Charged jet results at same p_T for RHIC and LHC (N.B. scale by \sim 1.5 to get to full jet equivalent p_T)
- Similar RAA for both collision energies

Nuclear modification of jets Jet suppression: photon-tagged jets *Flavor dependence of energy loss* **PW** C $\sqrt{2}$

Helen Caines - Yale - Midsummer QCD School - July 2024 81

-
-

Different spectral shapes for particles of differing mass

Helen Caines - Yale - Midsummer QCD School - July 2024 82

Different spectral shapes for particles of differing mass \rightarrow strong collective radial flow

Good agreement with hydrodynamic explosively expanding source

Different spectral shapes for particles of differing mass → strong collective radial flow

STAR: PRC 96, (2017) 044904

