Inclusive J/ψ production in forward proton-proton and proton-lead collisions at high energy

Patricia Gimeno Estivill, Tuomas Lappi, Heikki Mäntysaari

University of Jyväskylä, Finland

Midsummer School in QCD 2024

Gluon saturation

- High-energy (small-x) regime \rightarrow strong increase in gluon density

 $Q_s^2 \sim M_{J/\psi}^2$

- Forward $(y \gg 1)$ rapidity in pA and pp collisions

$$x_p = rac{\sqrt{M_{J/\psi}^2 + p_\perp^2}}{\sqrt{s}} e^{y} \lesssim 1 \qquad \qquad x_A = rac{\sqrt{M_{J/\psi}^2 + p_\perp^2}}{\sqrt{s}} e^{-y} \ll 1$$

Inclusive J/ψ production

$$d\sigma_{\mathrm{J}/\psi} = \sum_{\kappa} d\hat{\sigma}^{\kappa} \langle \mathcal{O}_{\kappa}^{\mathrm{J}/\psi} \rangle \qquad \qquad \kappa = {}^{2S+1} \mathrm{L}_{J}^{[\mathcal{C}]}$$

 $\begin{array}{l} \mbox{Color Glass Condensate (CGC) + Non-Relativistic QCD (NRQCD) \\ & \mbox{Kang,Ma,Venugopalan 1309.7337v2} \end{array}$

NRQCD factorization formalism

$$d\sigma_{{
m J}/\psi} = \sum_\kappa d\hat{\sigma}^\kappa \langle {\cal O}^{{
m J}/\psi}_\kappa
angle$$

$$\kappa = {}^{2S+1} L_J^{[C]}$$

- Target described as a classical gluon field A
- Dilute-dense collision
- Proton collinear limit

Hadronization: NRQCD

Non-perturbative Long-Distance Matrix Elements (LDME) from experimental data

$$\langle \mathcal{O}^{\mathrm{J}/\psi}(^{3}\mathrm{S}_{1}^{[1]})\rangle \quad \langle \mathcal{O}^{\mathrm{J}/\psi}(^{1}\mathrm{S}_{0}^{[8]})\rangle \quad \langle \mathcal{O}^{\mathrm{J}/\psi}(^{3}\mathrm{S}_{1}^{[8]})\rangle \quad \langle \mathcal{O}^{\mathrm{J}/\psi}(^{3}\mathrm{P}_{J}^{[8]})\rangle$$

Chao et al. 1201.2675v4

Eikonal Interaction

Wilson Line \rightarrow parton-nucleus scattering

$$V(x_{\perp}) = \mathcal{P} \exp\left(-ig \int^{x^+} dy^+ A^-(x^+, x_{\perp})
ight)$$

Dipole Amplitude

$$D_{x_{\perp}-y_{\perp}} = \frac{1}{N_C} \langle \operatorname{Tr}[V_F(x_{\perp})V_F^{\dagger}(y_{\perp})] \rangle$$

- Initial condition (MV model) fit to HERA data + BK rapidity evolution $_{\text{Lappi, Mäntysaari}\ 1309.6963}$

Quadrupole Operator

$$Q_{x_{\perp},x'_{\perp},y'_{\perp},y_{\perp}} = \frac{1}{N_{C}} \langle \mathsf{Tr} \big[V_{F}(x_{\perp}) V_{F}^{\dagger}(x'_{\perp}) V_{F}(y'_{\perp}) V_{F}^{\dagger}(y_{\perp}) \big] \rangle$$

- JIMWLK/BK evolution equation
- Explicit expression in the finite and large- N_c limit Dominguez et al. 1101.0715v2

Preliminary results: color singlet channel

Approximated (arXiv:1408.4075v2) vs finite/large- N_c quadrupole

5/8

Preliminary results: pp in all channels

- $R_p = 16.36$ mb obtained from MV model fit to DIS data. $Q = M_{J/\psi} = 3$ GeV
- Expect Sudakov factor to change pt spectrum

Preliminary results: pp in all channels

Preliminary results: Nuclear modification ratio

$$R_{pA} = \frac{d\sigma_{pA}}{Ad\sigma_{pp}}$$

Preliminary results without CS channel (10% contribution) and unintegrated rapidity y=3.25)

- Nuclear supression
 →gluon saturation
- Cronin enhancement ³P^[8]_J channel

Preliminary results: Nuclear modification ratio

Conclusions

- Calculated J/ψ production in forward pp and pA collisions with CGC+NRQCD.
- Used full quadrupole in the large- N_c limit.
- The nuclear modification ratio exhibits the expected nuclear supression at high-*p*_t. Results within the experimental error bars, with a similar trend as the *R*_{pA} calculation in the CGC+CEM model. (Ducloué, Lappi, Mäntysaari 1503.02789v2)
- With the explicit expression for the quadrupole operator used in this work, need of Sudakov correction at NLO + fit initial conditions for BK equation to hadron production for a more precise treatment of inclusive J/ψ production in CGC+NRQCD.