The CMS detector to discovery From design s = 7 TeV. L = 5.1 fb⁻¹ s = 8 TeV. L = 5.3 fb⁻¹

180

CMS

ab contrate gunt mentions figure openers queents program at demonstration & their policy of few my of the polliner dhe inigio alle Veres millenes are now peak prote dot mate ion to mine atte , acht a mathie: the dellace mu mapel of windles I quite que non it more to rome a la topera chig ader ma to roug a topun anill it to fine we to mquative fur quest any to war years. The Joing, With just fails date guade finalts, to paket of I profide pin our medeun require, she toutered as afters mathing malle the side A budie + Londen shoupon by be to calling in bulkeyes lit Rudian uniouslan pinter www. all all i of man aufin markin it have ad signey a partien to proof a to parries for all of publics Juild any sai all war allies applied a wing monarch more terring da prover of cash buys for there established is will a gent to much it ture a to unine town munica-Carl april and send or devolut in operance all arthreaders stalls Muse Alunuit devery prolA that did they estation of hipran-

Himberro delle rom

10 years of Higgs, CERN, 4 July 2022

Michel Della Negra Imperial College, London and CERN, Geneva

The standard model (SM) in the 80's

At the end of the 1980s the **UA1+UA2 community** was preparing to move to the next hadron collider to be installed in the existing LEP tunnel.

The SM was given tremendous support by the UA experiments:

- •QCD : Jets abundantly produced and studied in gluon-gluon collisions
- •EWK theory: W and Z discovered and properties were studied.

Two fundamental pieces were missing:

• the top quark:

 $m_t < 200 \text{ GeV} (\text{indirect LEP 1}); m_t > 77 \text{ GeV} (\text{CDF})$

• the Higgs boson:

 $m_H > 44 \text{ GeV} (\text{LEP } 1); m_H < 1 \text{ TeV} (\text{Theory} : WW scattering unitarity})$

No lose theorem: A machine able to probe WW scattering up to ~ 1 TeV will either find the Higgs boson or discover new (strong) forces beyond the SM.

•The LHC project (16 TeV pp in LEP tunnel) was really launched in the **Aachen workshop in 1990** (Rubbia, Brianti). To compete with the SSC (40 TeV pp in Texas, USA) a very high luminosity (10^{34} cm⁻²s⁻¹) was mandatory.

• Physics working groups were formed. First studies on physics reach at 10^{34} cm⁻²s⁻¹ were presented.

1)

1990 Aachen volume II: Higgs Studies

SEARCH FOR $H \rightarrow Z^*Z^* \rightarrow 4$ LEPTONS AT LHC

Higgs Study Group

M. Della Negra, D. Froidevaux, K. Jakobs, R. Kinnunen, R. Kleiss, A. Nisati and T. Sjöstrand

"Requires identification of both electrons and muons. After lepton isolation cuts, a clear Higgs signal should be visible for a total integrated luminosity of 10^5 pb⁻¹ (= 100 fb⁻¹ ~ 1 year at 10^{34} cm⁻²s⁻¹)." Aachen 1990

2) Photon decay modes of the intermediate mass Higgs ECFA Higgs working group C.Seez and T. Virdee L. DiLella, R. Kleiss, Z. Kunszt and W. J.Stirling

Presented at the LHC Workshop, Aachen, 4 - 9 October 1990 by C. Seez, Imperial College, London.

"The jet background can be reduced below the direct di-photon spectrum (isolation and π^0 rejection). Need a superb electromagnetic calorimeter energy resolution (2%/ $\sqrt{E} \oplus 0.5\%$) to establish a H $\rightarrow\gamma\gamma$ signal for 80 GeV < m_H < 150 GeV and 10⁵ pb⁻¹"

Which detector at LHC? Lessons from UA1

 Discovering W→ ev at UA1 (1981) turned out to be remarkably easy: Electron: electromagnetic calorimeter + magnetic tracking Missing transverse energy: Hermetic Calorimeter

Electron E_T = 24 GeV well measured in em calorimeter + no visible jet on the away side (hadron calorimeter)

• Demonstrating $W \rightarrow \mu \nu$ was a lot more difficult!

High p_T muons suffer from poor momentum resolution: B=0.7T (dipole)

 $\pi \rightarrow \mu v$ decays can fake high p_T muons and induce fake missing transverse energy. Low pT muons on the other hand have an advantage over electrons. They can be detected inside jets: B physics at hadron collider was pioneered by UA1.

First ideas for an LHC detector:

- A robust and redundant muon detector is a priority.
- Muon detection and measurement is guaranteed at any luminosity (Iron Ball) !
- Need a strong magnetic field (momentum resolution).

First conceptual design of CMS

Which magnet to choose to deliver a strong magnetic field ?

All kinds of magnetic configurations were ^{M. De} discussed with the magnet group of H. Desportes in Saclay: solenoid, toroid, magnetised iron box.

Strong forces exerted on the conductor can be better managed with a circular coil. Preferred choice: Long solenoid with large inner radius:

- •Highest possible field?
- •Long solenoid for good forward acceptance
- large coil radius to accommodate full calorimetry inside

L = 15m

R = 2.9m

B = 4 Tesla

- Bending in plane transverse to the beam: one point (interaction vertex in z) with σ =15um for free.
- Momentum resolution improved at v.high momenta by using muon and tracker systems

Design of LHC Detectors

Search for the SM Higgs boson played a crucial role in the design of CMS. A general purpose detector is needed.

It was not at all clear that a general purpose detector could work at a luminosity of 10^{34} cm⁻² s⁻¹:

- Fast detectors (25ns between bunch crossings)
- Radiation Hard (more than 10 Mrad forward)
- Very high granularity: minimize cell occupancy and pile-up
- Event size and rate, trigger selection, bandwidth of readout network

Much R&D was needed & started after the 1990 Aachen workshop.

CERN setup the Detector R&D Committee to guide this.

Expressions of Interest (EoI) presented in Evian (March 1992) by four proto-collaborations: Ascot, Eagle, CMS, L3P

CMS Expression of Interest: Evian March 1992

Assembly by double co-extrusion or soft soldering Michel Della Negra/Higgs 10y /4 July 2022

Engineering Form of CMS

CMS Letter of Intent: November 1992

CMS Design Objectives

- A very good and redundant muon detection system,
- The best possible e/γ calorimeter consistent with 1),
- 3) High quality central tracking to achieve 1) and 2).
- 4) Affordable
 staged ≤ 300 MCHF
 full ≤ 400 MCHF

Slide from Open Lol Presentation Dec. 1992 After Evian three Lols: ATLAS, CMS and L3P were submitted, followed by open presentations in Dec 1992

9

Crucial Design Choices (Early 1990s)

- A state-of-the-art superconducting high field solenoid.
- Muon chambers with triggering capabilities embedded in the magnet yoke. Three technologies:
 - Drift Tubes (DTs, barrel)
 - Cathode Strip Chambers (CSCs, endcaps)
 - Resistive Plate Chambers (RPCs, barrel and endcaps)
- Microstrip tracking relying on relatively few high precision points (unprecedented area)
- Novel Lead tungstate scintillating crystals for ECAL (1994)
- Pixels detectors over a large surface area (1994)
- HCAL inside the coil: Brass/Scintillator

• Only one custom level trigger (Level 1), then go straight into commercial processors through a commercial telecommunications switch for HLT (with full event information to make the selection of events to be recorded on "tape")

State of Art: CMS Solenoid Coil

Precise and Redundant Muon Detector

Barrel: four muon stations (DTs and RPCs) inserted in the magnet return yoke

Redundancy: Each muon station has 12 layers of drift cells: 8 r-phi + 4 theta measurements, as well as 2 layers of double gap RPCs for the 2 inner stations, and one double-gap RPC layer for the outer stations

 $\Delta P_t/P_t \sim 5\%$ @1TeV for reasonable space resolution of muon chambers (200µm)

Muon P_t trigger in transverse plane

Transverse View

Central barrel wheel with four muon stations

Endcap Muons

Four muon stations made of cathode strip chambers (CSC) mounted on 3 endcap disks extend the pseudorapidity coverage up to |eta| = 2.4. Each muon station has 6 layers of proportional chambers with cathode strips readout.

Three muon stations made of one-layer double-gap RPCs mounted on 3 endcap disks cover the range |eta| < 1.6

The third endcap muon station

Muon pT Resolution

Precise Photon Detector: PbWO4 Crystal Calorimeter

Tracking at LHC?

Question at the time: can tracking be done, in a congested environment, with a few (~10) points albeit precise ones? 66 million silicon pixels: $100 \times 150 \,\mu\text{m}^2$ 9.3 million silicon microstrips: $80\mu\text{m} - 180\mu\text{m}$. ~200 m² of active silicon area (cf ~ 2m² in LEP detectors) ~13 precise position measurements (15 μ m) per track.

Hadron calorimeter

Hermetic Hadron Calorimeter inside the coil: Brass absorber/scintillator tiles $\sigma/E = 110\%/\sqrt{E} \oplus 9\%$

Particle Flow (PF) reconstruction (2009) pioneered by P. Janot and C. Bernet: Combining track measurements and calorimeter clusters leads to substantial improvement of the missing transverse energy resolution and of the jet energy resolution (JINST 12 (2017) P10003):

Physics Performance: Electrons and Muons

Dimuon mass resolution – out of the box!

Dielectron mass resolution

The Discovery

By summer 2012 CMS had accumulated ~10 fb⁻¹ of pp collision data. A mass peak was observed at 125 GeV in the 4I (4e, 4mu, 2e2mu) and in the 2 photon final state as expected for a SM Higgs boson of that mass.

4 July 2012: Higgs announcement at CERN

Joe Incandela (CMS) Fabiola Gianotti (ATLAS)

François Englert and Peter Higgs

	Int. Luminosity at 7, 8 TeV	mH [GeV]	Expected [st. dev.]	Observed [st. dev.]
ATLAS	10.7 fb ⁻¹	126.0 ± 0.6	4.6	5.0
CMS	10.4 fb ⁻¹	125.3 ± 0.6	5.9	4.9