

Higgs boson production cross sections and couplings Higgs@10

A. de Wit on behalf of the ATLAS and CMS collaborations

Introduction & overview

- What have we learned from 10 years of studying the Higgs boson?
 - Focus on production cross sections & couplings from combined measurements with Run 2 data

JHEP 08 (2016) 045

ATLAS+CMS

--- ATLAS --- CMS

-±1σ

 $\pm 2\sigma$

ATLAS and CMS

LHC Run 1

 μ_{ggF}

 μ_{VBF}

Combined measurements: ingredients

- Individual analyses study specific Higgs boson characteristics
 → need to combine them to get a full view of the Higgs boson
- Targeted signatures included in combined measurements:

Most of the main production x decay channels included

Note: some additional channels not yet included in combined measurements

Rare decay modes starting to feature in combined measurements

Searches for invisible H decays (for coupling strengths)

Combined measurements: ingredients

Measurements in many decay channels included \rightarrow range of analysis techniques

Events / Bin width [GeV⁻

Data/Expected

- S/B discrimination, classification
 - S/B separating variables
 - **BDT, DNN** ٠
 - Matrix element •
- Background estimation
 - Data sidebands ٠
 - Data/simulation • mixture

Cross section measurements

(Inclusive) signal strength or cross section

Simplified template cross sections

EW qqH

 $m_{jj}[0, 350]$

 $v_{p_T^{Hjj}} \infty$ 25

 p_T^{Hjj}

n

 \geq 2-jet

 $p_T^H\left[0,200
ight]$

25

 $= VBF + V(\rightarrow qq)H$

 $m_{ii}[350,\infty]$

 m_{jj}

350

700

1000

1500 ∞

 ∞

0

25

- · First quantity to measure when establishing a channel
- Still powerful with more data: global effects
- · Requires more data

Stage 1.2

= 0-jet

= 1-jet

 m_{jj}

60

120

350

- Maximise BSM sensitivity / minimising theory dependence \rightarrow Theory + experiment common ground
- Exploit many variables simultaneously
- · Considers inclusive decays easier combination of channels

Differential, fiducial measurements

· Generally with fiducial selection for the decay

Π PJC 80 (2020) 942

Signal strengths, cross sections

 Signal strength modifiers µ scale cross sections and branching fractions relative to the SM:

$$\mu_{i} = \frac{\sigma_{i}}{\sigma_{i}^{\text{SM}}} \qquad \qquad \mu^{f} = \frac{\mathscr{B}^{f}}{\mathscr{B}^{f}_{\text{SM}}} \qquad \qquad \mu_{i}^{f} = \frac{\sigma_{i} \cdot \mathscr{B}^{f}}{(\sigma_{i} \cdot \mathscr{B}^{f})_{\text{SM}}} = \mu_{i} \times \mu^{f}$$

• Or define a global signal strength scaling all channels:

 $\mu = 1.002 \pm 0.057 = 1.002 \pm 0.036$ (theo) ± 0.033 (syst) ± 0.029 (stat) $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.04$ (theo) ± 0.03 (syst) ± 0.03 (stat) **CMS ATLAS**

- Improvement in relative precision: 14% (Run 1) \rightarrow 6% (Run 2)
 - Theory uncertainty: 7% (Run 1) \rightarrow 4% (Run 2)

gluon-gluon fusion precision better than 10%!

10-20% precision on other major production modes

Measurement of $\sigma_{tH} \rightarrow$ gaining access to rare production modes

Decay channels

Nature 607 (2022) 52

Simplified template cross sections

Simplified template cross sections

- Recent results from CMS in individual decay channels
- Examples: H→ττ, H→WW (sensitive for VBF, ggH, low p⊤ VH

N

V

Differential measurements

- Differential cross section measurements in several channels (H→ γγ, H→ZZ, H→ττ, H→WW)
- Example: large range of variables measured in the $H\rightarrow\gamma\gamma$ channel

Generally good agreement between measurements and predictions Interpretations: see later

Coupling measurements

- Coupling modifier framework → parameterisation of inclusive production and decay rates
- Processes with loops:
 - Can resolve loops or consider effective coupling modifiers
- Constrain possible BSM contributions to Higgs width in effective case:

$$\frac{\Gamma_{\mathsf{H}}}{\Gamma_{\mathsf{H}}^{\mathsf{SM}}} = \frac{\kappa_{\mathsf{H}}^{2}}{(1 - \mathscr{B}_{\mathsf{inv}} - \mathscr{B}_{\mathsf{undet}})}$$

Scale all vector boson couplings with κ_V , all fermion couplings with κ_F

Scale all vector boson couplings with κ_V , all fermion couplings with κ_F

Higgs-charm coupling: see A. Marini's talk after the coffee break

Reduced coupling modifiers vs particle mass

Follows pattern expected in SM

0000000

 H^0

g

Higgs-charm coupling: see A. Marini's talk after the coffee break

Reduced coupling modifiers vs particle mass

Follows pattern expected in SM

Couplings, undetected BR

To constrain B_{undet}: assume κ_W,κ_Z ≤1

Strongest constraints on effective coupling modifiers: O(5%)

 H^0

Kg

9

Ø

0000000

66666

NEW Couplings from cross sections

Combined measurements of differential cross sections in $H \rightarrow \gamma \gamma$ K_{c} and $H \rightarrow ZZ$ channels - 68% CL -ATLAS Preliminary * Standard Model 10 - 95% CL $H \rightarrow ZZ^*, H \rightarrow \gamma \gamma$ \land Obs. $H \rightarrow ZZ^*$ $8 - \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ∇ Obs. $H \rightarrow \gamma \gamma$ Obs. Combination Shape + normalisation Constraints on Kh and κ_c from shape 2.2 $d\sigma/d(p_T^H)[pb/GeV]$ ATLAS Preliminary $H \rightarrow ZZ^*$ + normalisation of $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^*, H \rightarrow \gamma\gamma$ Combination vs = 13 TeV, 139 fb⁻¹ $p_{\mathsf{T}}^{\mathsf{H}}$ Systematic Uncertainty **Total Uncertainty** MG5 FxFx K=1.47, +XH 1.6 ResBos2 K=1.14. +XH SCETlib K=1, +XH RadiSH K=1, +XH 0.5 NNLOPS K=1.1. +XH 1.2 -1.5_1 -0.5 0 1.5 $XH = VBF + VH + t\bar{t}H + b\bar{b}H + tH$ κ_b 0.8 х С 0.6 AS Preliminary Standard Mode 68% CL $H \rightarrow ZZ^*, H \rightarrow \gamma \gamma$ Obs. Combination 0.4 **Constraints from** $VH(b\overline{b}), VH(c\overline{c})$ $B_{\rm BSM} = 0$ 0.2 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ shape + normalisation of Theory/Data 2 1.5 p_T^H and direct VH→bb/cc 0.5 60 80 120 200 300 650 1000 0 20 30 45 10 measurement p_{τ}^{H} [GeV] 0.5 -0.5-1 0

16

Summary & outlook

- We have learned much about the 125 GeV Higgs boson since its discovery
- Measurements of cross sections in different kinematic regions advancing
- More properties under study: see A. Ferrari's talk on HH production next
- Run 3 starts tomorrow: ready for the next decade of Higgs boson exploration!

CMS

Discovery

-68% CL

+ LHC Run 1

1.0

0.8

1.2

1.4

---95% CL

This paper

SM Higgs

Å

1.5

1.0

0.5

0.0

0.6