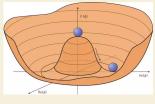


The Higgs boson self-interaction


a.k.a: Twice the Higgs, twice the fun!

Arnaud Ferrari (Uppsala University, Sweden) on behalf of the ATLAS and CMS Collaborations

Higgs10 Symposium, CERN, 04/07/2022

The ultimate probe of the scalar sector

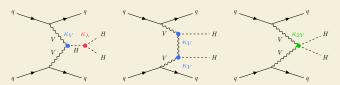
- With the Higgs boson discovery, only a portion of the Higgs potential has been measured.
- ▶ Its shape completely determines the properties of the scalar sector.

$$\langle \phi_0 \rangle \ = \ \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right), \ v = \sqrt{\mu^2/\lambda}.$$

$$\mathbf{SM:}\ V(\phi) = -\mu^2\phi^2 + \lambda\phi^4 \overset{\phi \to v + H}{\supset} \frac{\lambda v^2 H^2}{\lambda v^2 H^2} + \frac{\lambda v H^3}{\lambda v H^3} + \dots$$

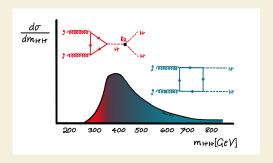
$$\underset{\frac{1}{2}m_H^2 H^2}{\text{mass term}} \text{ self-interaction terms (never observed)}$$

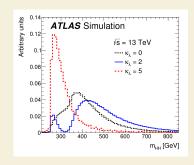
- ▶ Higgs boson pair (HH) production allows to probe *directly* the Higgs boson self-interaction and, ultimately, the shape of the Higgs potential.
- ▶ Any deviation from the self-interaction predicted by the SM would be a sign of new physics!


Higgs boson pair production

Non-resonant pairs of Higgs bosons (HH) arise from several diagrams, some of which interfere destructively. Very small cross-sections!

Gluon-gluon fusion: $\sigma_{ggF}^{SM} \simeq 31 \text{ fb } [13 \text{ TeV}].$

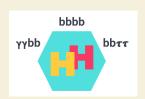

Vector-boson fusion: $\sigma_{\text{VBF}}^{\text{SM}} \simeq 1.7 \text{ fb [13 TeV]}.$


Other production modes (e.g. VHH, ttHH) have even smaller cross-sections.

Non-resonant HH mass distribution(s)

- ▶ HH events from the self-interaction diagrams are soft.
 - ⇒ Challenging for triggers and detector object reconstruction/identification!
- \blacktriangleright $\kappa_{\lambda} \neq 1$ modifies the cross-section and kinematical properties of HH pairs.

ATLAS Physics Briefing: Twice the Higgs, twice the challenge

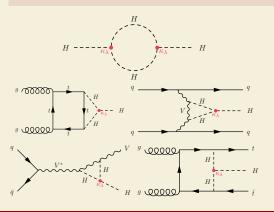


Phys. Lett. B 800 (2020) 135103

HH decays and search channels

Multitude of Higgs boson decay modes $\Rightarrow \mathcal{O}(\text{multitude}^2)$ of HH search channels, each with specific experimental challenges and sensitivity reach.

- ▶ Not a single "golden" channel.
- ▶ But (at least) three silver bullets!



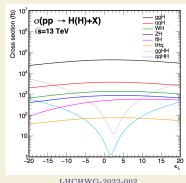
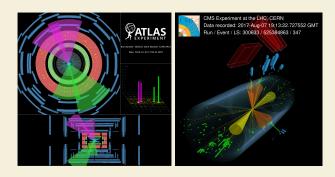
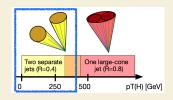
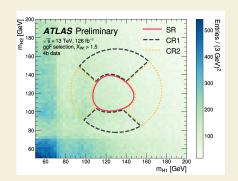

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Image by Katharine Leney


Impact of the self-interaction on single-H

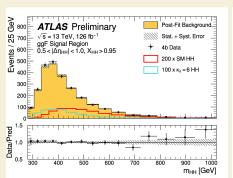
- ▶ Single Higgs boson processes do not depend on κ_{λ} at LO.
- ▶ However, NLO electroweak loops allow κ_{λ} to affect single Higgs boson production and decay modes.

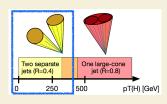

$HH \rightarrow bbbb$

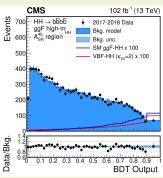

- ▶ Highest branching ratio... but large multi-jet background!
- \blacktriangleright Mostly probes large $m_{HH} \Rightarrow$ sensitivity to HH events with large $p_{\rm T}^{\rm H}.$
- ► ATLAS: ATLAS-CONF-2022-035
- ► CMS: arXiv:2202.09617 [hep-ex] & arXiv:2205.06667 [hep-ex]

$HH \rightarrow bbbb - resolved topology$

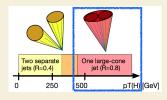
- ▶ Start from triggered events with ≥ 2 (ATLAS) or ≥ 3 (CMS) b-jets.
- ► SR = two b-jet pairs compatible with a Higgs boson.
- ▶ Data-driven background model based on SR event re-weighting:
 - $2b \rightarrow 4b$ (ATLAS);
 - $3b \rightarrow 4b$ (CMS);
 - Re-weighting function derived with machine-learning techniques in CRs around the SR.



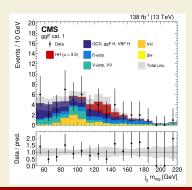

Sketch by Daniel Guerrero


$HH \rightarrow bbbb - resolved topology$

- ▶ ggF- and VBF-like event categories based on forward jets and kinematic properties of HH.
 - ATLAS: fit m_{HH} in all categories;
 - CMS: fit an MVA classifier output or m_{HH} in different categories.

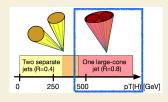


Sketch by Daniel Guerrero

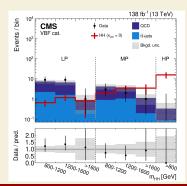


$HH \rightarrow bbbb - boosted topology (CMS)$

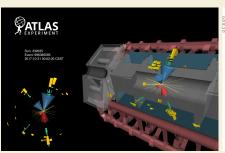
- ➤ Two large-radius jets as H→bb candidates.
- ➤ Sophisticated tagger to discriminate against QCD-induced jets.
- Multi-jet background based on transfer factors from CRs with looser H→bb tagging requirements.
- ▶ ggF-like SRs: jet mass as discriminant.
- ▶ VBF-like SRs \leftrightarrow 7 bins in H \rightarrow bb tagger purity and m_{HH} .

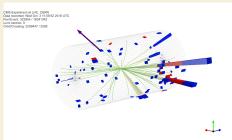


Sketch by Daniel Guerrero



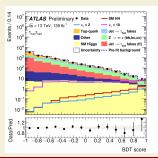
$HH \rightarrow bbbb - boosted topology (CMS)$

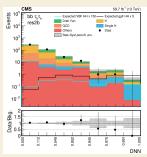

- ► Two large-radius jets as H→bb candidates.
- ➤ Sophisticated tagger to discriminate against QCD-induced jets.
- ▶ Multi-jet background based on transfer factors from CRs with looser H→bb tagging requirements.
- ▶ ggF-like SRs: jet mass as discriminant.
- ▶ VBF-like SRs \leftrightarrow 7 bins in H \rightarrow bb tagger purity and m_{HH} .
- $\Rightarrow \kappa_{2V} = 0$ hypothesis excluded with $\gtrsim 6\sigma$ (other κ 's at 1)!



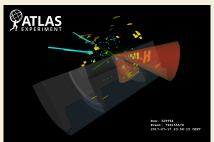
Sketch by Daniel Guerrero

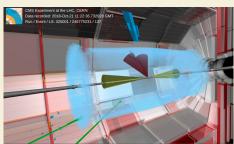
$\mathrm{HH} \to \mathrm{bb} \tau \tau$



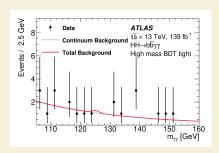


- \blacktriangleright Intermediate branching ratio... but clean final state with moderate backgrounds!
- ► ATLAS: ATLAS-CONF-2021-030
- ► CMS: arXiv:2206.09401 [hep-ex]

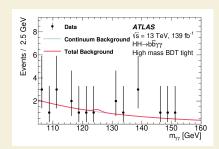

$HH \rightarrow bb\tau\tau$

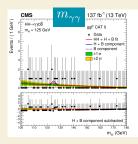

- ▶ $bb\tau_h\tau_e$, $bb\tau_h\tau_\mu$ and $bb\tau_h\tau_h$ final states + further event categories:
 - CMS: 5 VBF-like regions + 3 ggF-like regions based on the H \rightarrow bb topology (resolved 2b, resolved 1b, boosted);
 - ATLAS: 3 inclusive regions based on the trigger strategy.
- ▶ Background modelling:
 - $t\bar{t}$ and Z+jets: simulation with data-driven corrections;
 - data-driven method if a gluon- or quark-initiated jet mimics τ_h .
- ▶ Signal extraction: MVA classifiers for both ATLAS and CMS.

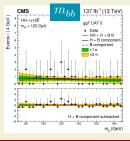
$HH \rightarrow bb\gamma\gamma$



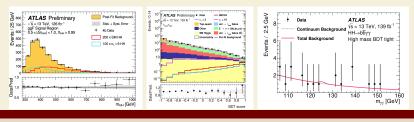
- \blacktriangleright Tiny branching ratio... but very clean signature: excellent $m_{\gamma\gamma}$ resolution and small backgrounds!
- \blacktriangleright Enhanced sensitivity at low $m_{HH},$ hence to the Higgs boson self-interaction.
- ► ATLAS: arXiv:2112.11876 [hep-ex]
- ► CMS: JHEP03 (2021) 257

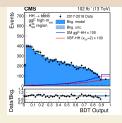

$HH \rightarrow bb\gamma\gamma$

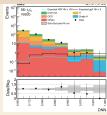

- ▶ Di-photon trigger and event selection + 2 b-jets.
- ► Event categories based on:
 - $m_{bb\gamma\gamma}$;
 - various purity regions based on MVA outputs;
 - ggF- and VBF-like topologies (in CMS).
- ▶ Signal and backgrounds:
 - HH and single-H shapes from simulation;
 - continuum background shape from data;
- ATLAS: parametric fit of $m_{\gamma\gamma}$ only.
- ► CMS: parametric fit in the $(m_{\gamma\gamma}; m_{bb})$ plane.

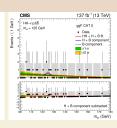


$\mathrm{HH} \to \mathrm{bb} \gamma \gamma$

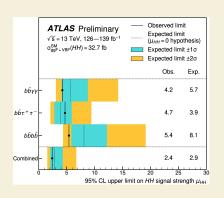

- ▶ Di-photon trigger and event selection + 2 b-jets.
- ▶ Event categories based on:
 - $m_{bb\gamma\gamma}$;
 - various purity regions based on MVA outputs;
 - ggF- and VBF-like topologies (in CMS).
- ▶ Signal and backgrounds:
 - HH and single-H shapes from simulation;
 - continuum background shape from data;
- ATLAS: parametric fit of $m_{\gamma\gamma}$ only.
- ► CMS: parametric fit in the $(m_{\gamma\gamma}; m_{bb})$ plane.

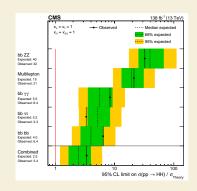



Putting it all together...

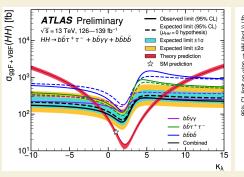


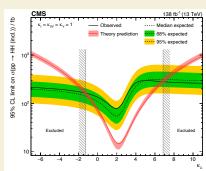
No golden HH search channel: combinations are key. [HOT OFF THE PRESS!]


- ► ATLAS: ATLAS-CONF-2022-050
- ► CMS: Nature 607, 60-68 (2022)



HH combined results: limits on $\sigma_{\rm ggF+VBF}^{\rm HH}$

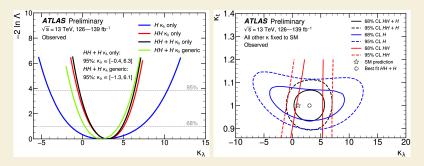

Obs. (exp.) 95% CL combined limit: $2.4~(2.9) \times SM$ prediction.


Obs. (exp.) 95% CL combined limit: $3.4 (2.5) \times SM$ prediction.

CMS: the individual bbbb limit combines resolved and boosted topologies.

HH combined results: limits on κ_{λ}

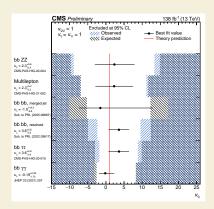
ATLAS and CMS 95% CL limits on $\sigma_{\rm ggF+VBF}^{\rm HH}$ vs κ_{λ} (all other κ 's at 1):

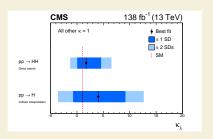


HH+H: constraints on κ_{λ} [ATLAS]

Constraints on κ_{λ} via a scan of the negative-logarithm of the profile likelihood, for various fit configurations:

• HH searches only, single-H measurements only, or their combinations.


Summary of ATLAS HH+H combined results:


- ▶ Profile κ_{λ} only: $-0.4 < \kappa_{\lambda} < 6.3$ (95% CL).
- ▶ Profile κ_{λ} , κ_{t} , κ_{V} , κ_{b} , κ_{τ} : $-1.3 < \kappa_{\lambda} < 6.1$ (95% CL).

HH+H: constraints on κ_{λ} [CMS]

Constraints on κ_{λ} via a scan of the negative-logarithm of the profile likelihood, for various fit configurations:

• HH searches only, single-H measurements only.

Summary of CMS single-H and HH results (profile κ_{λ} only):

- ▶ Single-H: $-3.6 < \kappa_{\lambda} < 12.6$ (95% CL).
- ▶ HH: $-1.3 < \kappa_{\lambda} < 6.4$ (95% CL).

Summary

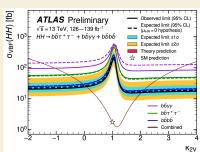
- ▶ Elusive non-resonant pairs of Higgs bosons are the prime experimental signature of the Higgs boson self-interaction.
- ▶ Electroweak corrections in single-H processes provide additional sensitivity to the Higgs boson self-interaction.
- \blacktriangleright ATLAS+CMS have published impressive results with LHC Run 2 data:
 - ▶ $\sigma_{\rm HH}$ above 2.4–3.4 times the SM predictions is excluded at 95% CL;
 - $\kappa_{\lambda} \in [-0.4; +6.3]$ at 95% CL (ATLAS).
 - $\kappa_{\lambda} \in [-1.3; +6.4]$ at 95% CL (CMS).
- \blacktriangleright We are all eager to analyse Run 3 data to further probe HH events.
- ▶ The HL-LHC will provide the ultimate dataset to measure the Higgs boson self-interaction ⇒ more in E. Brost's talk!

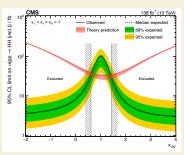
Summary

- ▶ Elusive non-resonant pairs of Higgs bosons are the prime experimental signature of the Higgs boson self-interaction.
- ▶ Electroweak corrections in single-H processes provide additional sensitivity to the Higgs boson self-interaction.
- \blacktriangleright ATLAS+CMS have published impressive results with LHC Run 2 data:
 - $\sigma_{\rm HH}$ above 2.4–3.4 times the SM predictions is excluded at 95% CL;
 - $\kappa_{\lambda} \in [-0.4; +6.3]$ at 95% CL (ATLAS).
 - $\kappa_{\lambda} \in [-1.3; +6.4]$ at 95% CL (CMS).
- \blacktriangleright We are all eager to analyse Run 3 data to further probe HH events.
- ▶ The HL-LHC will provide the ultimate dataset to measure the Higgs boson self-interaction ⇒ more in E. Brost's talk!

Many tHHanks for your attention!!

To my Mum, in loving memory.

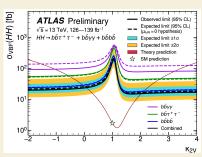

Back-up slides

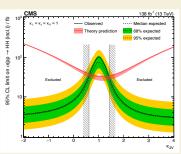

Beyond the Higgs boson self-interaction

Searches for VBF Higgs boson pair production allow to uniquely probe the VVHH quartic coupling.

ATLAS and CMS 95% CL limits on HH cross-sections as a function of κ_{2V} (all other κ 's at their SM values):

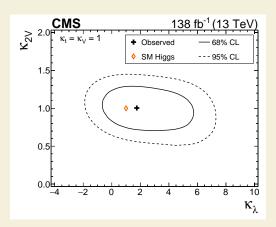
 κ_{2V} values outside [0.1; 2.0] are excluded at 95% CL.


 κ_{2V} values outside [0.7; 1.4] are excluded at 95% CL.


Beyond the Higgs boson self-interaction

Searches for VBF Higgs boson pair production allow to uniquely probe the VVHH quartic coupling.

ATLAS and CMS 95% CL limits on HH cross-sections as a function of κ_{2V} (all other κ 's at their SM values):


CMS excludes the $\kappa_{2V} = 0$ hypothesis with a significance of 6.6 σ !

Additional plots – ATLAS

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1}_{-1}\sigma$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$ \kappa_{\lambda} = 3.1^{+1.9}_{-2.0} $ $ \kappa_{\lambda} = 2.5^{+4.0}_{-3.9} $ $ \kappa_{\lambda} = 3.0^{+1.8}_{-1.9} $
Single- <i>H</i> combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Additional plot – CMS

