

years HIGGS boson

discovery

Rare Higgs boson decays

Andrica Carlo Marini

on behalf of the ATLAS and CMS Collaborations

Introduction

What's rare?

- Higgs to cc
- Higgs to $Z\gamma$
- Higgs to µµ
- Higgs to ee
- Higgs to bound states
- ...

ATLAS and CMS released analyses on the full Run 2 dataset

Experimentally challenging:

- Small BR
- Low S/B

Decay channel	Branching fraction (%)
bb	57.63
WW	22.00
gg	8.15
ττ	6.21
сс	2.86
ZZ	2.71
$\gamma\gamma$	0.227
$\mathrm{Z}\gamma$	0.157
SS	0.025
μμ	0.0216
ee	5 10-9

Motivations

- The fermionic sector is characterised by Yukawa couplings to the Higgs boson
 - Proportional to the fermion mass!

- New physics can affect differently the different fermion generations.
 - Precision mapping of the couplings is key to understand the nature of the Higgs boson
 - Asymmetries in the leptonic vs the quark sector

Rare decays happen also through quantum loops:

 Precise measurements give indications on the couplings and particles in the loop, and therefore are sensitive to new structures and particles

SM & Higgs boson production

Comparison to Standard Model

Andrea Carlo Marini

$H \rightarrow cc - ATLAS$

arXiv:2201.11428

- Probing the charm Yukawa coupling. $SM \mathcal{B}(H \rightarrow cc) = 2.8\%$
- VH production: V=W, Z and leptonic ($\ell = e, \mu$) or invisible decays (v)
- Small branching fraction and very large hadronic background
- The associated V boson allow for good online selection (trigger) of the events. Analysis of the Run 2 datasets.
- 3 Categories: 0 lepton (E^{Tmiss} >150 GeV), 1 lepton, and 2 lepton targeting Z→vv, W→ℓv, and Z→ℓℓ
- 1c- and 2c-tagged categories
 - c-tagging: orthogonal to b-tagging

4 July 2022

Andrea Carlo Marini

$H \rightarrow cc - CMS$

HIG-21-012

arXiv:2205.05550

ggH Analysis

Boosted cc system in the final state

$$\mu_{\rm H} = 8.6^{+19.9}_{-19.4},$$

45 (38) at the 95% CL.

VH Analysis of the Run 2 datasets

 Higgs to charm reconstructed both in the boosted (p_T>300 GeV) and resolved regimes

Resolved regime:

- Using deep neural network to improve rejection of light quarks vs b jets (DeepJet)
- Dedicated energy regression
- 3 Categories: 0 lepton, 1 lepton, and 2 lepton targeting Z→vv, W→ℓv, and Z→ℓℓ

Andrea Carlo Marini

$H \rightarrow cc - CMS$

arXiv:2205.05550

CMS

Simulation

anti- $k_{\tau} R = 1.5$ jets

p_ > 300 GeV, հրl < 2.4

Boosted regime

- Major backgrounds are the corresponding V+jets productions
- Charm tagging boosted region: ParticleNet, a multiclass graph network for jet identification and mass estimation.

Andrea Carlo Marini

4 July 2022

CERN

(13 TeV

DeepAK15

--- ParticleNet

H→μμ — ATLAS PLB 812 (2021) 135980

SM *B*(H→ μμ) ~ 2.2 × 10⁻⁴

large SM irreducible DY $\rightarrow \mu\mu$ background - S/B ~ 0.1% for inclusive events at 125 GeV Improvements to increase sensitivity:

- Targeting all production modes
- MVA categorisation to select events at high S/B, e.g. from VBF
- γ -FSR recovery to improve $\sigma(m_{\mu\mu})$

Signal extraction from m_{µµ} fit Background parametrisation:

 Common "core" pdf + per-category empirical function

 $\mu = 1.2 \pm 0.6$

Observed (expected) significance $2.0\sigma\,(1.7\sigma)$

Andrea Carlo Marini

CERN - CMS H→µµ JHEP 01 (2021) 148 137 fb⁻¹ (13 TeV) 137 fb⁻¹ (13 TeV) Dedicated MVA to enhance sensitivity in all the GeV GeV CMS **CMS** • Data production modes H→µµ Data Events / Zii-EW DY 700 **All categories** S+B (µ=1.19) Post-fit • γ -FSR and in site \mathbb{Z} calleration Diboson Top quark S/(S+B) weighted Bkg. component 600 • VBF backgroung prediction from MC simulation m_H = 125.38 GeV $\pm 1\sigma$ 3+B) Weighted E ±2σ DNN discrimination with mass as feature ggH, ttH, VH analytical fit to the invariant mass: • core pdf for the background estimation 137 fb⁻¹ (13 TeV) 137 fb⁻¹ (13 TeV) 10 VBF,VH Best fit **CMS** Combined $\hat{\mu} = 1.19^{+0.44}_{-0.42}$ 4 CMS 9 68% CL Combined best fit μ 3.5 - 95% CL N 8 SM expectation SM $\mu = 1.36_{-0.61}^{+0.69}$ VBF-cat. 3 68% CL 95% CL 14 150 2.5 $\mu = 0.63^{+0.65}_{_{-0.64}}$ 6 ggH-cat. эV) m_H = 125.38 GeV 2 $\mu = 2.32^{+2.27}$ tīH-cat. AS INCE -1.95 1.5 (9 +0.44 **Evidence** for $\mu = 5.48_{-2.83}^{+3.10}$ VH-cat. 2 3.0o (2.5a) 0.5 0 0 -0.5 2 2.5 -2 2 8 -1.5 0 0.5 1.5 0 4 6 -1 μ Best-fit μ ggH,t**ī**H

Andrea Carlo Marini

4 July 2022

H→ ee HIG-21-015

PLB 801 (2020) 135148

• Direct probe of the Higgs-electron Yukawa coupling

SM prediction for $\mathcal{B}(H \rightarrow ee) \sim 5 \times 10^{-9}$

- Several categories
- Most sensitive category is VBF (best S/B)
- Parametric fit to the invariant mass distribution simultaneously in all categories

Andrea Carlo Marini

 $H \rightarrow Z\gamma - CMS$ arXiv:2204.12945

SM *B*(H→Zγ) = 1.6 × 10⁻³

- Sensitivity to new physics in the difference between $H \rightarrow Z\gamma$ and $H \rightarrow \gamma\gamma$
- Selecting $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events and an additional photon
- Sensitivity to the different production modes: VH (lepton), VBF (dijet), ggH (Untagged)
- MVA to enhance event categorisation
- Parametric fit to the invariant mass

2.7 (1.2) σ obs (exp)

Andrea Carlo Marini

$H \rightarrow Z\gamma - ATLAS \quad PLB \ 809 \ (2020) \ 135754$

- Selecting $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events and an additional photon
 - |m_{ℓℓ} -m_Z | < 10 GeV
 - Kinematic fit and muon γ -FSR \rightarrow mass resolution
- 6 categories:

VBF enriched, and S/B based (high, low p_T) or resolution (p_T^{γ}) and lepton flavor

Parametric fit to the invariant mass

$$\mu = 2.0 \pm 0.9(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) = 2.0^{+1.0}_{-0.9}(\text{tot.})$$

$$2.2 (1.2)\sigma \text{ obs (exp)}$$

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\ (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6}\ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\;(1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}\ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9}\;(1.0^{+0.9}_{-0.9})$	2.2 (1.2)

$$\mu = 2.0 \pm 0.9(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) = 2.0^{+1.0}_{-0.9}(\text{tot.})$$

Andrea Carlo Marini

4 July 2022

$H \rightarrow \gamma^* \gamma - ATLAS$ PLB 819 (2021) 136412

• Search for $H \rightarrow \gamma^* \gamma \rightarrow ee\gamma$ or $H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$

SM $\mathcal{B}(H \rightarrow ee\gamma) = 7.2 \times 10^{-5}$ SM $\mathcal{B}(H \rightarrow \mu\mu\gamma) = 3.4 \times 10^{-5}$

- m_{ℓℓ} < 30 GeV
 - $p_T^{\mu} > 3 \text{ GeV}, p_T^{e} > 5 \text{ GeV}_z^{\mu}$

H

- p_Tγ > 20 GeV
- A collection of triggers to keep high trigger efficiencies (~97%)

Η

4 July

- Categories based on event topology and lepton flavor
- Both resolved and merged ee categories
 - Dedicated ID and calibration for the merged ee system
- $\mu = 1.5 \pm 0.5$

Andrea Carlo Marini

3.2 (2.1) σ obs (exp)

Higgs decays to mesons

- Bound states are rare final state but can give insight on couplings to running particles
- Motivate the SM origin of the mass to light, charm, and bottom quarks

- The quarkonium $(J/\psi, Y)$ decays into two muons leave a clear experimental signature inside the detectors.
- Alternatively, tracks have a good invariant mass resolution at low p_T (K[±], π[±]). Bound states like (**ρ**, **φ**) in association with a Z boson, to trigger and reduce background.

Higgs decays to quarkonium

SM $\mathcal{B}(H \rightarrow J/\psi \gamma) = 3 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow \psi_{2s} \gamma) = 1 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow \Upsilon_{1s} \gamma) = 5.2 \times 10^{-9}$ SM $\mathcal{B}(H \rightarrow Y_{2s} \gamma) = 1.4 \times 10^{-9}$ SM $\mathcal{B}(H \rightarrow Y_{3s} \gamma) = 10^{-9}$

In association with a Z boson

SM $\mathcal{B}(H \rightarrow Z J/\psi) = 2.3 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow Z \psi_{2S}) = 1.7 \times 10^{-6}$

Two quarkonium decays

		CMS	95%	6CL Br	anching fra	action limi
		${\rm H} ightarrow {\rm J/r}$	ψγ	Long	itudinal 1.2 (1.4	$^{+0.6}_{-0.4}) \times 10^{-6}$
	EPJ C	79 (20 ⁻	19) 94	Trans	sverse 7.6 (5.2	$^{+2.4}_{-1.6}) \times 10^{-4}$
AT	LAS	HDBS	<u>8-2018</u>	- <u>53</u>	AVER	
		Branchin	$\frac{93\% \text{ CL}_s \text{ u}}{\text{g fraction}}$	pper mints	$\sigma \times 2$	B
Decay	Higgs bos	on [10 ⁻⁴]	Z boson	[10 ⁻⁶]	Higgs boson [fb]	Z boson [fb]
channel	Expected	Observed	Expected	Observed	Observed	Observed
$J/\psi~\gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71
$\psi\left(2S\right)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135
$\Upsilon(1S)\gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59
$\Upsilon(2S)\gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135

	Process	Observed	Expected	Obser	rved
SM $B(H \rightarrow J/\psi J/\psi) = 1.5 \times 10^{-10}$	Higgs boson channel	Longitudinal	Longitudinal	Unpolarized	Transverse
SM $\mathcal{B}(H \rightarrow \Upsilon \Upsilon) = 2 \times 10^{-9}$	${\cal B}({ m H} o ZJ/\psi)$	$1.9 imes10^{-3}$	$(2.6^{+1.1}_{-0.7}) imes 10^{-3}$	$2.4 imes 10^{-3}$	$2.8 imes 10^{-3}$
	$\mathcal{B}(\mathrm{H} \to \mathrm{Z}\psi(\mathrm{2S}))$	6.6×10^{-3}	$(7.1^{+2.8}_{-2.0}) imes 10^{-3}$	$8.3 imes10^{-3}$	$9.4 imes10^{-3}$
	${\cal B}({ m H} ightarrow { m J}/\psi { m J}/\psi)$	$3.8 imes 10^{-4}$	$(4.6^{+2.0}_{-0.6}) imes 10^{-4}$	$4.7 imes10^{-4}$	$5.2 imes 10^{-4}$
CMS	${\cal B}({ m H} o \psi(2{ m S}){ m J}/\psi)$	$2.1 imes 10^{-3}$	$(1.4^{+0.6}_{-0.4}) \times 10^{-3}$	$2.6 imes 10^{-3}$	$2.9 imes10^{-3}$
	$\mathcal{B}(\mathrm{H} ightarrow \psi(\mathrm{2S})\psi(\mathrm{2S}))$	$3.0 imes 10^{-3}$	$(3.3^{+1.5}_{-0.9}) \times 10^{-3}$	$3.6 imes10^{-3}$	$4.7 imes10^{-3}$
<u>arXiv:2206.03525</u>	$\mathcal{B}(H \to Y(nS)Y(mS))$	$3.5 imes 10^{-4}$	$(3.6^{+0.2}_{-0.3}) imes 10^{-4}$	$4.3 imes10^{-4}$	$4.6 imes10^{-4}$
	$\mathcal{B}(H \to Y(1S)Y(1S))$	1.7×10^{-3}	$(1.7^{+0.1}_{-0.1}) imes 10^{-3}$	2.0×10^{-3}	2.2×10^{-3}
Andrea Carlo Marini	4 July 202	22			15

Higgs decays to vector mesons

SM *B*(H→ Zρ) = 1.4 × 10⁻⁵ SM *B*(H→ Zφ) = 4.2 × 10⁻⁶

ATLAS <u>JHEP 07 (2018) 127</u>

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H \to \phi \gamma\right) \left[\begin{array}{c} 10^{-4} \end{array} \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}(Z \to \phi \gamma) [10^{-6}]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}(H \to \rho \gamma) [10^{-4}]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6}\ \right]$	33^{+13}_{-9}	25

• $\varphi \rightarrow \mathsf{K}^{\pm}\mathsf{K}^{\pm}$, $\rho \rightarrow \pi^{\pm}\pi^{\pm}$

CMS JHEP 11 (2020) 039

Andrea Carlo Marini

Summary

CMS and ATLAS have a large program to assess the rare decays of the Higgs boson

Direct Yukawa couplings:

Second generation sensitivity close to the SM:

Ημμ: CMS 3.0*σ* (2.5*σ*), ATLAS 2.0*σ* (1.7*σ*)

Hcc:

- σB < 14.4 (7.6) × SM CMS
- σB < 31 (26) × SM ATLAS

First fermion generation is out reach; looking for large deviations.

CMS 138 fb⁻¹ (13 TeV) $K_f \frac{m_f}{\upsilon}$ or $\sqrt{K_V} \frac{m_V}{\upsilon}$ m_u=125.38 GeV $p_{_{\rm SM}} = 37.5\%$ 10-1 10⁻² Leptons and neutrinos Quarks 10⁻³ Higgs boson Force carriers 10-4 Ratio to SM 1.2 1.05 1.0 0.8 0.6 10² 10^{-1} 10

HZγ: Both experiments: a small excess in the Run2. CMS 2.7 σ (1.2 σ), ATLAS 2.2 σ (1.2 σ)

Searches for Higgs boson decays to **bound states** also probe unexplored couplings, having sensitivity to strange, charm, bottom couplings, but also to new physics in the loop

ature

607

60

Particle mass (GeV)

years HIGGS boson discovery

<u>Fhank you</u>

DSON

The CMS Detector

CMS

CÉRN

The CMS Detector

CÉRN

The ATLAS detector

Andrea Carlo Marini

4 July 2022

H

008

CMS

The ATLAS detector

CÉRN

CMS Phase II upgrades

CMS DETECTOR LS2 UPGRADES

Andrea Carlo Marini

4 July 2022

ATLAS Phase II Upgrades

Installed new muon detectors with

capabilities. Key preparation for the

precision tracking and muon selection

(NSW)

HL-LHC.

ATLAS DETECTOR LS2 UPGRADES

MUON NEW SMALL WHEELS NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON CALORIMETER

New electronics boards installed, increasing the granularity of signals used in event selection and improving trigger performance at higher luminosity.

TRIGGER AND DATA ACQUISITION SYSTEM (TDAQ)

Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

NEW MUON CHAMBERS IN THE CENTRE OF ATLAS

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate chamber (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.

4 July 2022

ATLAS FORWARD PROTON (AFP)

Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-ofvacuum" solution.

Andrea Carlo Marini

The Higgs boson mass

- Run I legacy measurement
 - CMS and ATLAS combination of the 7 and 8 TeV data

PRL 114 (2015) 191803

CÉRN

The Higgs boson mass

Precise measurement of the Higgs boson mass using the diphoton and ZZ (4-leptons) decay channels using 2016 data from CMS

$m_H = 125.38 \pm 0.14 \text{ GeV}$

Andrea Carlo Marini

Higgs production

Vector-boson fusionGluon-gluon fusionVBFggH

VH associate production VH Top quark pair associate production ttH

CÉRN

Andrea Carlo Marini

Huu invariant mass

THE REPORT OF TH

Andrea Carlo Marini

$H \rightarrow \mu \mu - CMS$

JHEP 01 (2021) 148

29

Core PDF — Hµµ CMS

- THE REPORT OF TH
- The background function is designed to minimise possible mismodels due to the choice of the analytical form

Andrea Carlo Marini

Core PDF — Hµµ CMS

• The background function is designed to minimise possible mismodels due to the choice of the analytical form

VHcc mass — CMS

CÉRN

Prospects of VHcc at HL-LHC

4 July 2022

CÉRN

VHcc ATLAS

THE REPERTING TH

• Kappa b vs kappa c

VH(cc̄) VHcc mass — AILAS Post-fit

Andrea Carlo Marini

4 July 2022

CÉRN

- Many contributions to the loop (W, c)
- Non resonant ($m_{\mu\mu\gamma}$) background estimated with an analytical function
- Resonant background reduced with invariant mass window (m_{µµ}) requirements

Andrea Carlo Marini

4 July 2022

CERN

Z(H)

 $H \rightarrow J/\psi \gamma, \psi(2s) \gamma, \gamma \gamma - ATLAS$

SM $\mathcal{B}(H \rightarrow \psi_{2s} \gamma) = 1 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow \Upsilon_{1s} \gamma) = 5.2 \times 10^{-9}$

SM $\mathcal{B}(H \to Y_{2s} \gamma) = 1.4 \times 10^{-9}$ SM $\mathcal{B}(H \to Y_{3s} \gamma) = 10^{-9}$

HDBS-2018-53

- Sensitivity to the coupling of the charm through a loop contribution in the $J/\psi \gamma$
- And to the bottom in the $\Upsilon\gamma$ and CP violation
- Kinematic requirements are applied in order to enhance the signal contribution
- Non parametric background model derived from Control regions and validated in dedicated regions.
- 2D fit in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$

			95% CL _s u	pper limits		- A A A A A A A A A A A A A A A A A A A
	Branching fraction			$\sigma \times 2$	B	
Decay	Higgs boson [10^{-4}]		Z boson	[10 ⁻⁶]	Higgs boson [fb]	Z boson [fb]
channel	Expected	Observed	Expected	Observed	Observed	Observed
$J/\psi \ \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71
$\psi\left(2S\right)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135

$H \rightarrow Z J/\psi / J/\psi J/\psi / \Upsilon _{\underline{arXiv:2206.03525}}$

- J/ψ decays into muons
- Z decays into leptons (electron or muons)
- The $\psi(2S)$ meson decays into a J/ ψ + X, where X is not reconstructed

SM $\mathcal{B}(H \rightarrow Z J/\psi) = 2.3 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow Z \psi_{2S}) = 1.7 \times 10^{-6}$ SM $\mathcal{B}(H \rightarrow J/\psi J/\psi) = 1.5 \times 10^{-10}$ SM $\mathcal{B}(H \rightarrow \Upsilon \Upsilon) = 2 \times 10^{-9}$

Andrea Carlo Marini

4 July 2022

- Isolated pair of tracks associated with a calorimetric cluster
- $\Phi \rightarrow \mathsf{K}^{\pm}\mathsf{K}^{\pm}$, $\rho \rightarrow \pi^{\pm}\pi^{\pm}$

39

 Background is resampled from a control region inverting the isolation and validated in side-band regions

H->ZQ / Z ϕ - CMS JHEP 11 (2020) 039

Andrea Carlo Marini