years HIGGS boson

The Higgs boson in searches for physics beyond the Standard Model

Roberto Salerno on behalf of the ATLAS and CMS Collaborations

Few examples

H₁₂₅

Few examples

invisible decay

H₁₂₅ invisible and undetected decays

H₁₂₅

Few examples

H₁₂₅ invisible and undetected decays

H₁₂₅ flavour violating decays

invisible decay

H125

Few examples

H₁₂₅ invisible and undetected decays

H₁₂₅ flavour violating decays

invisible decay

Few examples

H₁₂₅ invisible and undetected decays

H₁₂₅ flavour violating decays

invisible decay

Few examples

invisible decay

flavour violating decays

H₁₂₅ invisible and undetected decays

H₁₂₅ flavour violating decays

Very large physics program pursued by both ATLAS and CMS! It is impossible to cover everything, I will show the diversity and complementary of few analyses.

10th anniversary of the Higgs boson discovery - Roberto Salerno - 7

exotic decays

sector extended

Higgs boson to invisible decay

The expected SM H branching fraction to invisible decay (\mathscr{B}_{inv}) is 0.12% due to $H \to ZZ^* \to \nu \bar{\nu} \nu \bar{\nu}$ Several BSM scenario \Rightarrow anomalous and sizeable values, \mathscr{B}_{inv} is significantly enhanced.

invisible decay

Higgs boson to invisible decay

The expected SM H branching fraction to invisible decay (\mathscr{B}_{inv}) is 0.12% due to $H \to ZZ^* \to \nu \bar{\nu} \nu \bar{\nu}$ Several BSM scenario \Rightarrow anomalous and sizeable values, \mathscr{B}_{inv} is significantly enhanced.

In one class of models H decay in a pair of stable WIMPs. They represent a simple extension of the SM to provide a Dark Matter (DM) candidate and are able to predict the observed relic DM density via s-channel $\chi\chi \rightarrow f\bar{f}$ annihilation.

The solution of the DM problem could be found within the Higgs sector.

invisible decay

Higgs boson to invisible decay

The expected SM H branching fraction to invisible decay (\mathscr{B}_{inv}) is 0.12% due to $H \to ZZ^* \to \nu \bar{\nu} \nu \bar{\nu}$ Several BSM scenario \Rightarrow anomalous and sizeable values, \mathscr{B}_{inv} is significantly enhanced.

In one class of models H decay in a pair of stable WIMPs. They represent a simple extension of the SM to provide a Dark Matter (DM) candidate and are able to predict the observed relic DM density via s-channel $\chi\chi \rightarrow f\bar{f}$ annihilation.

The solution of the DM problem could be found within the Higgs sector.

Common signature : significant missing transverse momentum from the Higgs boson decay. **Identify the event** : profit of visible particles recoiling against the Higgs boson.

invisible decay

Search for Higgs boson to invisible decay

ATLAS and CMS probe all production mechanisms

analyses	ATLAS	Phys.Rev.D 103 (2021) 11, 112006	arXiv:2202.07953 Eur.Phys.J.C 82 (2022) 2,
	CMS	JHEP 11 (2021) 153	Phys.Rev.D 105 (2022) 09

invisible decay

105	Phys.Lett.B 829 (2022) 137066	ATLAS-CONF-2022
105	Eur.Phys.J.C 81 (2021)	
92007	JHEP 11 (2021) 153	

Search for Higgs boson to invisible decay

analyses 	ATLAS	Phys.Rev.D 103 (2021) 11, 112006	arXiv:2202.07953 Eur.Phys.J.C 82 (2022) 2,
	CMS	JHEP 11 (2021) 153	Phys.Rev.D 105 (2022) 09

section and **distinctive event topology**

invisible decay

VBF Higgs boson to invisible decay

2 jets with large angular separation $\Delta \eta_{ii}$ and large invariant mass m_{ii} Veto on other objects (leptons/photons) High missing transverse momentum (trigger constraint) → reject QCD Low $|\Delta \phi_{ii}| \rightarrow \text{reject QCD}$

 \Rightarrow Main remaining backgrounds: $Z(\nu\nu)$ + jets and $W(l\nu)$ + jets (strong and VBF productions)

invisible decay

arXiv:2202.07953

CMS Phys.Rev.D 105 (2022) 092007

VBF Higgs boson to invisible decay

2 jets with large angular separation $\Delta \eta_{ii}$ and large invariant mass m_{ii} Veto on other objects (leptons/photons) High missing transverse momentum (trigger constraint) → reject QCD Low $|\Delta \phi_{ii}| \rightarrow \text{reject QCD}$

 \Rightarrow Main remaining backgrounds: $Z(\nu\nu)$ + jets and $W(l\nu)$ + jets (strong and VBF productions)

invisible decay

arXiv:2202.07953

Phys.Rev.D 105 (2022) 092007

VBF Higgs boson to invisible decay

2 jets with large angular separation $\Delta \eta_{ii}$ and large invariant mass m_{ii} Veto on other objects (leptons/photons) High missing transverse momentum (trigger constraint) \rightarrow reject QCD Low $|\Delta \phi_{ii}| \rightarrow \text{reject QCD}$

 \Rightarrow Main remaining backgrounds: $Z(\nu\nu)$ + jets and $W(l\nu)$ + jets (strong and VBF productions)

invisible decay

arXiv:2202.07953

Phys.Rev.D 105 (2022) 092007

Interpretations

Upper limits on the spin-independent WIMP-nucleon cross section

invisible decay

Interpretations

Upper limits on the spin-independent WIMP-nucleon cross section

invisible decay

Lepton-Flavour Violating decays

 $H \rightarrow e\mu/\mu\tau/e\tau$ are forbidden in the SM but takes place through the LFV Yukawa couplings $Y_{ij} \neq (m_i/v)\delta_{ij}$ arising in two Higgs doublet models, extra dimensions, models with flavor symmetries, models of compositeness, ... $\begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ & Y_{\mu\mu} & Y_{\mu\tau} \\ & & Y_{\tau\tau} \end{pmatrix}$

flavour violating decays

flavour violating decays

ating decays

Phys.Rev.D 104 (2022) 032013

 Y_{ee} eμ $Y_{\mu\mu}$ $Y_{\tau\tau}$

Jt takes place through the LFV two Higgs doublet models, extra es, models of compositeness, ...

by $\mu \rightarrow e\gamma$)

Channels: $e\tau_h$, $e\tau_\mu$, $\mu\tau_h$, $\mu\tau_e$ Jet categories: Oj, 1j, 2j (ggH), VBF BDTs to discriminate signal Joint fit to BDT outputs

Most sensitive category

Lepton-Flavour Violating decays

<u>≻</u>^ב10⁻¹

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 $H \rightarrow e \mu / \mu \tau / e \tau$ are forbidden in the SM but takes place through the LFV Yukawa couplings $Y_{ij} \neq (m_i/v)\delta_{ij}$ arising in two Higgs doublet models, extra dimensions, models with flavor symmetries, models of compositeness, ...

Focus on $Y_{e\tau}$ and $Y_{\mu\tau}$ ($Y_{e\mu}$ strongly constrained by $\mu \to e\gamma$)

The upper limits on $\mathscr{B}(H \to e\tau)$ and $\mathscr{B}(H \to \mu \tau)$ are used to put constraints on $Y_{e\tau}$ and $Y_{\mu\tau}$

Better than constraints from other experiments and for $Y_{\mu\tau}$ within the naturalness limit $|Y_{\mu\tau}Y_{\tau\mu}| < \frac{m_{\mu}m_{\tau}}{r^2}$

 Y_{ee} 137 fb⁻¹ (13 TeV) CMS CMS Հ**→3**µ **τ→3e** <u>≻</u> 10⁻ **τ→**μ^ 10^{-2} expected H->e expected H->un 10^{-3} 10^{-4} 10^{-5 L} 10^{-3} 10⁻² 10^{-3} 10^{-5} 10⁻² **10**⁻⁵ 10^{-4} 10^{-1} 10^{-4} $\mathscr{B}(H \to \mu \tau) < 0.15 \%$ IY I $\mathscr{B}(H \to e\tau) < 0.22\%$ $\mu \tau$

Higgs boson exotic decays

Some extensions^[1] to the SM include Higgs boson decays via one or two hypothetical on-shell new (pseudo)scalar(s) decaying to a pair of SM particles.

[1] additional SM-neutral singlet model, minimal composite Higgs models, two-Higgs-doublet-like models, next-to-minimal supersymmetric standard models, axion-like particle models, hidden abelian Higgs models,

exotic decays

Higgs boson exotic decays

Some extensions^[1] to the SM include Higgs boson decays via one or two hypothetical on-shell new (pseudo)scalar(s) decaying to a pair of SM particles.

If kinematically allowed $a \rightarrow bb$ generally dominates, but other decays may also be significant depending on the model.

[1] additional SM-neutral singlet model, minimal composite Higgs models, two-Higgs-doublet-like models, next-to-minimal supersymmetric standard models, axion-like particle models, hidden abelian Higgs models,

exotic decays

Searches down to 15–20 GeV have resolved final states, below that, decay products start to merge.

Higgs boson exotic decays

Some extensions^[1] to the SM include Higgs boson decays via one or two hypothetical on-shell new (pseudo)scalar(s) decaying to a pair of SM particles.

If kinematically allowed $a \rightarrow bb$ generally dominates, but other decays may also be significant depending on the model.

Searches down to 15–20 GeV have resolved final states, below that, decay products start to merge.

ATLAS and CMS have produced many results on various final states using the LHC Run2 data.

[1] additional SM-neutral singlet model, minimal composite Higgs models, two-Higgs-doublet-like models, next-to-minimal supersymmetric standard models, axion-like particle models, hidden abelian Higgs models,

exotic decays

exotic decays

The topology

exotic decays

Upper limits on the branching fraction

The topology

U(1) gauge theory mixes with SM hypercharge

U (1) is broken by a hiddensector Higgs mechanism

exotic decays

Results in this final state can be interpreted various theoretical models

Extended Higgs sector

$H \rightarrow ZZ_d/Z_dZ_d/ss/aa \rightarrow 4\ell$

Results in this final state can be interpreted various theoretical models

exotic decays

4 ττ final states ($\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$) b-tag/no b-tag category

 ϕ

Few m_T categories

eV)

extended sector

eV)

4 TT final states (T_hT_h , μT_h , eT_h , $e\mu$) b-tag/no b-tag category

extended sector

$W'/Z'/A \rightarrow Vh_{125}$

extended sector

HDBS-2020-19

Phys. Rev. D 105 (2022) 032008 Eur. Phys. J. C 81 (2021) 688

$W'/Z'/A \rightarrow Vh_{125}$

extended sector

HDBS-2020-19

Phys. Rev. D 105 (2022) 032008 Eur. Phys. J. C 81 (2021) 688

2d LL scan of b-associated production cross section vs gluon-gluon fusion production cross section

Conclusions

Ten years after its discovery, the Higgs boson plays a fondamental role in searches for physics beyond the Standard Model from studying its properties through probing for invisible, forbidden, and exotic decays to searching for additional particles part of a possible extended Higgs sector.

Conclusions

Ten years after its discovery, the Higgs boson plays a fondamental role in searches for physics beyond the Standard Model from studying its properties through probing for invisible, forbidden, and exotic decays to searching for additional particles part of a possible extended Higgs sector.

A very large physics program on all these topics is pursued by ATLAS and CMS!

More results on 🔝 Higgs HDBS 🔛 HIG EXO B2G physics analysis groups webpages

