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Very large physics program pursued by both ATLAS and CMS!  
It is impossible to cover everything, I will show the diversity and complementary of few analyses. 
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The expected SM H branching fraction to invisible decay ( ) is 0.12% due to  
Several BSM scenario  anomalous and sizeable values,  is significantly enhanced.

ℬinv H → ZZ* → νν̄νν̄
⇒ ℬinv
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Common signature : significant missing transverse momentum from the Higgs boson decay.  
Identify the event : profit of visible particles recoiling against the Higgs boson.
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The VBF production mechanism drives the overall 
sensitivity in the direct search for invisible decays of 
the Higgs boson, thanks to its large production cross 
section and distinctive event topology
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2 jets with large angular separation  and large invariant mass   
Veto on other objects (leptons/photons) 
High missing transverse momentum (trigger constraint) → reject QCD  
Low  → reject QCD 

 Main remaining backgrounds:  and  (strong and VBF productions)

Δηjj mjj

|Δϕjj |

⇒ Z(νν) + jets W(lν) + jets

Strategy

arXiv:2202.07953
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Upper limits on the spin-independent WIMP–nucleon cross section 

1−10 1 10 210 310 410
 [GeV]WIMPm

51−10

45−10

39−10

33−10

27−10
25−10]2

 [c
m

-n
uc

le
on

W
IM

P
σ

51−10

45−10

39−10

33−10

27−10
25−10

  ATLAS
-1TeV, 139 fb  = 13s

Higgs Portal WIMP:               Other experiments:
Scalar  DarkSide-50  
Majorana  PandaX-4T 

EFTVector Cresst-III 
 UV complete modelVector   

 < 0.127invB
All limits at 90% CL

 = 100GeV2m

 = 0.01GeV2m

 = 10GeV2m

coherent elastic neutrino-nucleus scattering

Figure 13: Upper limits on the spin-independent WIMP–nucleon cross section using Higgs portal interpretations of
Binv at 90% CL vs <WIMP. For the vector-like WIMP hypothesis, the dependence on the mass <2 of the new scalar
particle, which is often predicted by renormalisable models, is shown for three di�erent values covering a wide range
taken from Ref. [149]. For comparison with direct searches for DM, the plot shows results from Refs. [144–146]. The
neutrino floor for coherent elastic neutrino–nucleus scattering is taken from Refs. [151, 152] and assumes germanium
as the target over the whole WIMP mass range. The dependence on the choice of target nucleus is relatively small,
given the large range of cross sections shown.

ranging from 3 · 10�43 cm2 to 1 · 10�45 cm2 are excluded for masses between 1 GeV and 60 GeV. For the
Majorana fermion WIMP interpretation, cross sections exceeding values ranging from 4 · 10�47 cm2 to
7 · 10�45 cm2 are excluded for the same mass range, and for a vector-like WIMP the exclusion limit ranges
from 5 · 10�51 cm2 to 3 · 10�46 cm2. Adding a renormalisable mechanism for generating the vector-like
WIMP masses could modify the above-mentioned correlation substantially [147–149]. Many UV-complete
models predict a new scalar particle that mixes with the Higgs boson. This adds at least two free parameters
to the model, for example its mass <2 and the mixing angle U. The dependence of the exclusion limit for
the vector-like WIMP hypothesis on the mass <2 is shown in Figure 13. The uncertainty band in the plot
uses the latest computation of the nucleon form factors [150]. The overlay shows the complementarity in
coverage by the direct-detection experiments and the searches at colliders, such as the presented analysis.

The results are further interpreted as a search for invisible decays of heavy scalar particles acting as
mediators to dark matter. The considered masses range from 50 GeV to 2 TeV, and the upper limit on the
product of cross section and branching ratio to invisible particles (fVBF

· Binv) is shown in Figure 14. The
derived limits become stronger for heavier mediator masses due to an accumulation of the signal events at
larger values of <jj, where the background yields are smaller. The 95% CL upper limit on f

VBF
· Binv is

1.0 pb at a mediator mass of 50 GeV and strengthens to 0.1 pb for a mediator mass of 2 TeV.

35
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 are forbidden in the SM but takes place through the LFV 
Yukawa couplings  arising in two Higgs doublet models, extra 
dimensions, models with flavor symmetries, models of compositeness, …

H → eμ/μτ/eτ
Yij ≠ (mi/v)δij

Yee

Yμμ

Yττ

Yeμ Yeτ

Yμτ

flavour violating decays
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Figure 2: BDT discriminant distributions for the data and background processes in the H !
µth channel. A B(H ! µt) = 20% is assumed for the signal. The channel categories are 0 jets
(upper row left), 1 jet (upper row right), 2 jets ggH (lower row left), and 2 jets VBF (lower row
right). The lower panel in each plot shows the ratio of data and estimated background. The
uncertainty band corresponds to the background uncertainty in which the post-fit statistical
and systematic uncertainties are added in quadrature.

Channels: , , ,  

Jet categories: 0j, 1j, 2j (ggH), VBF  
BDTs to discriminate signal 
Joint fit to BDT outputs

eτh eτμ μτh μτe

Most sensitive category

Phys.Rev.D 104 (2022) 032013

flavour violating decays
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Figure 8: Expected (red line) and observed (black solid line) 95% CL upper limits on the LFV
Yukawa couplings, |Yµt | vs. |Ytµ | (left) and |Yet | vs. |Yte | (right). The |Yµt | or |Yet | couplings
correspond to left chiral muon or electron and right chiral t lepton, while |Ytµ | or |Yte | cou-
plings correspond to left chiral t lepton and right chiral muon or electron. In the left plot, the
expected limit is covered by the observed limit as they have similar values. The flavor diagonal
Yukawa couplings are approximated by their SM values. The green and yellow bands indicate
the range that is expected to contain 68% and 95% of all observed limit variations from the
expected limit. The shaded regions are constraints obtained from null searches for t ! 3µ or
t ! 3e (dark blue) [92] and t ! µg or t ! eg (purple) [93]. The blue diagonal line is the
theoretical naturalness limit |YijYji| = mimj/v

2 [11].

Table 4: Observed and expected upper limits at 95% CL and best fit branching fractions for
each individual jet category, and their combinations, in the H ! µt channel.

Expected limits (%)
0-jet 1-jet 2-jets VBF Combined

µte <0.34 <0.57 <1.13 <0.83 <0.27
µth <0.33 <0.43 <0.49 <0.30 <0.18
µt <0.15

Observed limits (%)
0-jet 1-jet 2-jets VBF Combined

µte <0.31 <0.36 <0.77 <0.58 <0.19
µth <0.37 <0.40 <0.50 <0.39 <0.24
µt <0.15

Best fit branching fractions (%)
0-jet 1-jet 2-jets VBF Combined

µte �0.03 ± 0.17 �0.40 ± 0.28 �0.66 ± 0.56 �0.41 ± 0.39 �0.14 ± 0.13
µth +0.05 ± 0.17 �0.05 ± 0.22 +0.02 ± 0.25 +0.10 ± 0.16 +0.07 ± 0.09
µt +0.00 ± 0.07

The upper limits on  and 
 are used to put constraints 

on  and 

ℬ(H → eτ)
ℬ(H → μτ)

Yeτ Yμτ

Better than constraints from other 
experiments and for  within the 
naturalness limit 

Yμτ

|YμτYτμ | <
mμmτ

v2

Phys.Rev.D 104 (2022) 032013

ℬ(H → eτ) < 0.22 %ℬ(H → μτ) < 0.15 %

flavour violating decays
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Some extensions[1] to the SM include Higgs boson decays via one or two hypothetical on-shell new 
(pseudo)scalar(s) decaying to a pair of SM particles. 
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Some extensions[1] to the SM include Higgs boson decays via one or two hypothetical on-shell new 
(pseudo)scalar(s) decaying to a pair of SM particles. 

Searches down to 15–20 GeV have resolved final states, below that, decay products start to merge.  
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If kinematically allowed a → bb generally 
dominates, but other decays may also 
be significant depending on the model. 

FIG. 7: Branching ratios of a singlet-like pseudoscalar in the 2HDM+S for Type II Yukawa
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ATLAS and CMS have produced many results on various final states using the LHC Run2 data.
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Figure 3: Observed (black solid curve with points) and median expected (blue dashed curve)
95% CL upper limits on B(H ! AA ! 4g) as a function of mA. The 68 and 95% CIs around
the expected limits are shown by the green and yellow bands, respectively. The upper limit
from a previous CMS measurement [1] of B(H ! gg) is shown in red, where the width of the
red band represents the uncertainty in the measurement. It is accurate for mA ⇡ 0.1 GeV where
the acceptance is comparable to that for the CMS SM H ! gg selection criteria and increases
approximately twofold toward mA = 1.0 GeV as the relative acceptance diverges.

prompt decays. For mA in the range 0.1–0.4 GeV, the upper limit on B(H ! AA ! 4g) is210

between 0.9 and 1.8 times larger than the prompt-decay limits for an A decay length of ct0 =211

1 mm, and 3 to 30 times larger for ct0 = 10 mm.212

The upper limits are also valid for models with dissimilar A masses, H ! A1A2, with mA,1 6=213

mA,2, for mass differences less than the mA-SR window, |mA,1 � mA,2| . 0.3 GeV. For larger214

mass differences, the signal mass peak would fall outside of the mA-SR region and be absorbed215

into the mA-SB background region, making a measurement impossible.216

In summary, results of a search for the exotic Higgs boson decay H ! AA ! 4g have been217

presented. Events reconstructed with two photons are used, where each photon is assumed218

to be a misreconstructed, merged A ! gg candidate. The first direct probe of the invariant219

mass spectrum of merged A ! gg candidates is performed to discriminate potential signal220

events from the SM background. No excess of events above the estimated background is found.221

Upper limits on the branching fraction B(H ! AA ! 4g) of 0.9–3.3 ⇥ 10�3 are set at the 95%222

confidence level for masses of A in the range 0.1 < mA < 1.2 GeV, assuming prompt A decays.223
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Figure 1. Exotic decays of the Higgs boson into four leptons induced by intermediate dark vector
bosons via (a) the hypercharge portal (to which the ZX analysis is sensitive) and (b) the Higgs
portal, where s is a dark Higgs boson [21] (to which the HM and LM analyses are sensitive). The
Zd gauge boson decays into SM particles through kinetic mixing with the hypercharge field (with
branching ratios that are nearly independent of ϵ). The HZZd vertex factor is proportional to ϵ
whereas the HZdZd vertex factor is proportional to κ. (c) illustrates the decay of a Higgs boson
into dark Higgs scalars s or pseudoscalars a that couple to SM particles through mixing with the
SM Higgs field in models with an extended Higgs sector (section 2.2).

The processes probed in this paper that involve a SM Higgs boson decaying into Zd
bosons are depicted in figures 1(a) and 1(b) and are included in the Hidden Abelian Higgs
Model (HAHM) [21]. The decay H → ZZd is sensitive to the parameters ϵ and mZd , but
does not depend on κ. However, the presence of an irreducible background from the SM
H → ZZ∗ process means that this signal can be observed only as a peak in the dilepton
mass spectrum over the background. The process H → ZdZd, in contrast, is much more
easily separated from SM backgrounds and hence is potentially sensitive to smaller values
of the kinetic mixing ϵ, where it is only required that the mixing be large enough for the
Zd boson to decay promptly. However, this process does require mixing between the SM
and dark-sector Higgs bosons and thus depends on κ.

Limits on the kinetic mixing of ϵ ! 0.03 have been set from precision electroweak
measurements [21, 69, 70] over the range 1GeV < mZd < 200GeV. Searches for dilepton
resonances, pp → Zd → ℓℓ, at the LHC for mZd < mZ imply that ϵ ! 0.005–0.020
for 20GeV < mZd < 80GeV [71]. Other searches rule out ϵ " 10−3 for 10MeV < mZd <

10GeV [72–77]. The H → XX → 4ℓ analyses constrain the Higgs mixing parameter κ, while
the H → ZZd → 4ℓ analysis provides information about the kinetic mixing parameter ϵ.

2.2 Extended Higgs sectors

Models containing two Higgs doublets and an additional scalar field (2HDM+S) [22,
78] are also relevant for the search for H → XX → 4µ. Two-Higgs-doublet models
(2HDMs) generically contain two neutral scalars H1,2, two charged scalars H±, and one
neutral pseudoscalar A. The lighter of the neutral scalars H1 is identified as the observed
Higgs boson H, while the other states are constrained to be heavy by existing data [79, 80].
Adding a complex scalar singlet that mixes weakly with H1,2 gives two additional states, a
scalar s and a pseudoscalar a. If these are lighter than mH/2, then H → aa and H → ss

– 3 –
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Figure 1. Exotic decays of the Higgs boson into four leptons induced by intermediate dark vector
bosons via (a) the hypercharge portal (to which the ZX analysis is sensitive) and (b) the Higgs
portal, where s is a dark Higgs boson [21] (to which the HM and LM analyses are sensitive). The
Zd gauge boson decays into SM particles through kinetic mixing with the hypercharge field (with
branching ratios that are nearly independent of ϵ). The HZZd vertex factor is proportional to ϵ
whereas the HZdZd vertex factor is proportional to κ. (c) illustrates the decay of a Higgs boson
into dark Higgs scalars s or pseudoscalars a that couple to SM particles through mixing with the
SM Higgs field in models with an extended Higgs sector (section 2.2).

The processes probed in this paper that involve a SM Higgs boson decaying into Zd
bosons are depicted in figures 1(a) and 1(b) and are included in the Hidden Abelian Higgs
Model (HAHM) [21]. The decay H → ZZd is sensitive to the parameters ϵ and mZd , but
does not depend on κ. However, the presence of an irreducible background from the SM
H → ZZ∗ process means that this signal can be observed only as a peak in the dilepton
mass spectrum over the background. The process H → ZdZd, in contrast, is much more
easily separated from SM backgrounds and hence is potentially sensitive to smaller values
of the kinetic mixing ϵ, where it is only required that the mixing be large enough for the
Zd boson to decay promptly. However, this process does require mixing between the SM
and dark-sector Higgs bosons and thus depends on κ.

Limits on the kinetic mixing of ϵ ! 0.03 have been set from precision electroweak
measurements [21, 69, 70] over the range 1GeV < mZd < 200GeV. Searches for dilepton
resonances, pp → Zd → ℓℓ, at the LHC for mZd < mZ imply that ϵ ! 0.005–0.020
for 20GeV < mZd < 80GeV [71]. Other searches rule out ϵ " 10−3 for 10MeV < mZd <

10GeV [72–77]. The H → XX → 4ℓ analyses constrain the Higgs mixing parameter κ, while
the H → ZZd → 4ℓ analysis provides information about the kinetic mixing parameter ϵ.

2.2 Extended Higgs sectors

Models containing two Higgs doublets and an additional scalar field (2HDM+S) [22,
78] are also relevant for the search for H → XX → 4µ. Two-Higgs-doublet models
(2HDMs) generically contain two neutral scalars H1,2, two charged scalars H±, and one
neutral pseudoscalar A. The lighter of the neutral scalars H1 is identified as the observed
Higgs boson H, while the other states are constrained to be heavy by existing data [79, 80].
Adding a complex scalar singlet that mixes weakly with H1,2 gives two additional states, a
scalar s and a pseudoscalar a. If these are lighter than mH/2, then H → aa and H → ss
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Figure 9. Distribution of m34 for data and background events in the mass range 115GeV < m4ℓ <
130GeV after the H → ZX → 4ℓ selection. The background normalization is taken from the fit
(see text); the shaded band represents the total uncertainty of the background prediction. Three
signal points for the H → ZZd → 4ℓ model are shown, stacked on top of the background histograms.
The signal yields are normalized with σ(pp → H → ZZd → 4ℓ) = 1

10σSM(pp → H → ZZ∗ → 4ℓ) =
0.69 fb. The uncertainties of the plotted data are asymmetric and are calculated using eqs. (40.76)
of ref. [160].

A total of 356 events are observed with an expected background of 320 ± 17. Figure 10
shows the observed local p-values for the background-only hypothesis. The profile-likelihood
ratio is again used as the test statistic. Different final states are not distinguished in the
fit; distributions used are summed over all channels. The normalization of the H → ZZ∗

background is allowed to float (as an unconstrained nuisance parameter, see section 10.1.2),
with a resulting normalization of 1.2± 0.16. The largest excess, with a local significance of
around 2σ, is at about mX = 39GeV.

These results are slightly different from the corresponding results from the ATLAS SM
H → ZZ∗ → 4ℓ analysis [173], which observed 310 events and found a signal strength of
σfid/σfid,SM = 0.96 ± 0.11. The difference is largely due to the differences in quadruplet
handling mentioned in section 5.6, and also due to differences in the definitions of the
isolation and impact parameter selections. When this analysis is repeated using the
quadruplet definition of ref. [173], the resulting normalization of the H → ZZ∗ background
is 1.12± 0.15.
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Figure 1: Representative lowest-order Feynman diagrams of the resonant production of a , or / boson and a Higgs
boson via (a) quark–antiquark annihilation, (b) gluon–gluon fusion and (c) 1-associated production. The subsequent
decays into the aā11̄, ✓±a11̄ and ✓

+
✓
�
11̄ final states are also depicted, where ✓ = 4, `, and g.

the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition95

radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic96

energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central97

pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters98

for both the electromagnetic and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer99

surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with100

eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the101

detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for102

triggering. A two-level trigger system is used to select events. The first-level trigger is implemented in103

hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is104

followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average depending105

on the data-taking conditions. An extensive software suite [31] is used in the reconstruction and analysis106

of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the107

experiment.108
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decays into the aā11̄, ✓±a11̄ and ✓

+
✓
�
11̄ final states are also depicted, where ✓ = 4, `, and g.

the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition95

radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic96

energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central97

pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters98

for both the electromagnetic and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer99

surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with100

eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the101

detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for102

triggering. A two-level trigger system is used to select events. The first-level trigger is implemented in103

hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is104

followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average depending105

on the data-taking conditions. An extensive software suite [31] is used in the reconstruction and analysis106

of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the107

experiment.108

26th June 2022 – 21:26 4

0-, 1-, and 2-lepton channels 
b-tag jet categories  (merged and resolved) 
Fit either  or mT,VH mVH

Strategy

ATLAS DRAFT

3−10

2−10

1−10

1

10

210

310

Ev
en

ts
/G

eV ATLAS
-1 = 13 TeV, 139 fbs

SR 0-lep.
3+ b-tags, resolved

300 400 500 600 1000
 [GeV]VhT, m

0.8
1

1.2

D
at

a/
Pr

ed
.

Data
Top+hf
Top+lf
Z+hf
Z+hl, Z+lf

W+hf
W+hl, W+lf
Other
Uncertainty
bbA (m = 0.7 TeV)

(a)

2−10

1−10

1

10

210

310

Ev
en

ts
/G

eV ATLAS
-1 = 13 TeV, 139 fbs

SR 2-lep.
3+ b-tags, resolved

300 400 500 600 700
 [GeV]Vhm

0.8
1

1.2
D

at
a/

Pr
ed

.

Data
Z+hf
Z+hl, Z+lf
Top+hf
Top

W+hf
Other
Uncertainty
bbA (m = 0.7 TeV)

(b)

3−10

2−10

1−10

1

10

210

Ev
en

ts
/G

eV ATLAS
-1 = 13 TeV, 139 fbs

SR 0-lep.

500 600 700 800 900 1000
 [GeV]VhT, m

0.8
1

1.2

D
at

a/
Pr

ed
.

2 b-tags, merged,
add. b-jets

Data
Top+hf
Top+lf
Z+hf
Z+hl, Z+lf

W+hf
W+hl, W+lf
Other
Uncertainty
bbA (m = 0.7 TeV)

(c)

3−10

2−10

1−10

1

10

210

Ev
en

ts
/G

eV ATLAS
-1 = 13 TeV, 139 fbs

SR 2-lep.

300 400 500 1000 2000
 [GeV]Vhm

0.8
1

1.2

D
at

a/
Pr

ed
.

1+2 b-tags, merged,
add. b-jets

Data
Z+hf
Z+hl, Z+lf
Top+hf
Top

W+hf
W+hl, W+lf
Other
Uncertainty
bbA (m = 0.7 TeV)

(d)

Figure 6: Event distributions of <T,+ ⌘ for the 0-lepton channel (a, c) and of <+ ⌘ for the 2-lepton channels (b,
d) in the merged and resolved 3+ tag SR categories of the 1b� fit. The term ‘Top’ summarises events from tt,
single-top-quark, tt + ⌘ and tt + + contributions. The quantity on the vertical axis is the number of data events
divided by the bin width in GeV. In each plot, the last bin contains the overflow. The background prediction is
shown after a background-only maximum-likelihood fit to the data. The signal for the benchmark 2HDM model
with <� = 0.7 TeV, normalised to f ⇥ ⌫(/⌘) ⇥ ⌫(⌘ ! 11̄) = 0.1 pb, is shown as a dashed line. The lower panels
show the ratio of the observed to the estimated SM background. The background uncertainty band shows the post-fit
statistical and systematic components added in quadrature.
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Figure 1: Representative lowest-order Feynman diagrams of the resonant production of a , or / boson and a Higgs
boson via (a) quark–antiquark annihilation, (b) gluon–gluon fusion and (c) 1-associated production. The subsequent
decays into the aā11̄, ✓±a11̄ and ✓
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11̄ final states are also depicted, where ✓ = 4, `, and g.

the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition95

radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic96

energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central97

pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters98

for both the electromagnetic and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer99

surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with100

eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the101

detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for102

triggering. A two-level trigger system is used to select events. The first-level trigger is implemented in103

hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is104

followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average depending105

on the data-taking conditions. An extensive software suite [31] is used in the reconstruction and analysis106

of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the107

experiment.108
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times branching fraction, f1b� ⇥ ⌫(� ! /⌘), vs the gluon–gluon fusion cross section times branching fraction,
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Figure 6: Event distributions of <T,+ ⌘ for the 0-lepton channel (a, c) and of <+ ⌘ for the 2-lepton channels (b,
d) in the merged and resolved 3+ tag SR categories of the 1b� fit. The term ‘Top’ summarises events from tt,
single-top-quark, tt + ⌘ and tt + + contributions. The quantity on the vertical axis is the number of data events
divided by the bin width in GeV. In each plot, the last bin contains the overflow. The background prediction is
shown after a background-only maximum-likelihood fit to the data. The signal for the benchmark 2HDM model
with <� = 0.7 TeV, normalised to f ⇥ ⌫(/⌘) ⇥ ⌫(⌘ ! 11̄) = 0.1 pb, is shown as a dashed line. The lower panels
show the ratio of the observed to the estimated SM background. The background uncertainty band shows the post-fit
statistical and systematic components added in quadrature.
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Figure 1: Regions of the H5 plane benchmark [3] of the Georgi-Machacek model [1, 2] excluded via direct searches
for new, heavy, neutral or charged Higgs bosons. Limits are quoted at 95% CL and are indicated for the data
(solid lines) and the expectation from the background model assuming only SM processes (dashed lines). The
coloured areas indicate the observed excluded regions in this parameter space. The Higgs bosons that are searched
for are produced via VBF for all searches shown here apart from ?? ! �

±±
�

⌥⌥ production that proceeds via the
Drell-Yan mechanism. The vector-boson fusion calculations are performed with the VBF@NNLO code [8, 9], whereas
the Drell-Yan calculation follows Ref. [11]. The branching ratios and the natural widths of the Higgs bosons in the
Georgi-Machacek model are calculated using GMCALC [10]. Because the heavy scalar search, � ! // ! 4; + ;;aa,
and the radion search, ' ! ++ (semi-leptonic), are valid only for relatively narrow Higgs bosons, dotted lines
at 0.5% and 10% denote the reach of the validity of their exclusion areas, respectively. In particular, for the
� ! // ! 4; + ;;aa search, the limit on the H5 plane is valid up to about a Higgs boson mass of 500 GeV. The
red solid and dashed lines beyond this mass correspond to the observed and expected exclusion, respectively, of the
cross-section limits without the width limitation.

The experimental upper limits provided in Refs. [4, 5] have a dependence on the assumed natural width of
the Higgs bosons. In particular, the limits of Ref. [4] are valid for Higgs bosons with a natural width up to
10% with respect to the mass of the Higgs boson, whereas for the analysis in Ref. [5] the limits are valid for
a width up to 0.5%. Contours corresponding to these two values of the width are also shown in Figure 1–3,
and the upper limits from Refs. [4, 5] are not shown above those contours.
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CMS Preliminary  (13 TeV)-135.9 fb

A very large physics program on all these topics is pursued by ATLAS and CMS! 

More results on   HDBSHiggs HIG B2GEXO physics analysis groups webpages

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html
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