

Run 2: p-p operation

• During Run 2:

- Demonstrated reliable operation with 6.5 TeV beams
- Exploited 25 ns bunch spacing to operate with >2500 bunches
- Reached design luminosity L_{IP1/5} = 10³⁴ cm⁻²s⁻¹ ... and doubled it!
- Delivered 160 fb⁻¹ to ATLAS and CMS

Availability

2018 data

Heavy ion operation

HL-LHC instantaneous luminosity (~6x10²⁷ cm⁻²s⁻¹) i.e. 6 times the LHC design value was already demonstrated in IP1 and IP5

Pb-Pb luminosity record in 2018

Further improvements incoming in 2022

HL-LHC - goals

Prepare machine for operation beyond 2025 and up to ~2040 Operation scenarios for:

- Total integrated luminosity of 3000 fb⁻¹ in around 10-12 years
- An integrated luminosity of ~250 fb⁻¹ per year
- **Nominal:** levelled luminosity of 5 x 10³⁴ cm⁻²s⁻¹ (events/crossing ~130)
- **Ultimate:** levelled luminosity of 7.5 x10³⁴ cm⁻²s⁻¹ (events/crossing ~200)

Higher Intensity

Smaller beam size at IP

Injector upgrade (bunch population, emittance)

Crossing angle compensation (crabs)

Operate in a high luminosity regime

HL-LHC: key nominal 25 ns parameters (GPDs)

Beam energy	7 TeV
Protons per bunch	2.2 x 10 ¹¹
Number of bunches	2760
Normalized emittance	2.5 μm
Beta*	15 cm
Crossing angle	500 μrad
Geometric reduction factor (F)	0.342
"Virtual" luminosity (with crabs)	1.7 x 10 ³⁵ cm ⁻² s ⁻¹
Levelled luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled <pile-up></pile-up>	~130

Operational scenario

LHC Injectors Upgrade

Deployed in LS2 (2019-20)

SPS

- RF system upgrade → solid state power amplifiers
- Impedance mitigation
- Robust beam dump and protection devices

Linac 4

- Higher energy 160 MeV
- H- ions → charge exchange injection into the PSB

SPS 6.9 km 450 GeV

PSB

- 160 MeV, charge exchange injection, reduced space charge → improved brightness
- Top energy: 1.4 GeV to 2 GeV
 - New main power supply
 - New RF systems

Run 3 at 6.8 TeV

Targeted consolidation and upgrades during LS2 followed by a long training campaign

Benefiting from the Injector upgrade

Proton-proton

- Levelled to a maximum luminosity 2.05×10^{34} cm⁻²s⁻¹ in ATLAS and CMS
- Levelled to a target of $^{\sim}1.4 \times 10^{31}$ cm⁻²s⁻¹ and 2×10^{33} cm⁻²s⁻¹ in ALICE and LHCb respectively
- ~1.8×10¹¹ proton/bunch in 2023 2025 long levelling times!

Squeeze

- Small beam size at interaction point implies larger beams in the triplet magnets
- Larger beams implies a larger crossing angle
- For the LHC, aperture concerns dictates caution
- For the HL-LHC → new wide aperture magnets

HL-LHC: IR magnets

New wide-aperture superconducting magnets for the interaction regions

Final focus quadrupole (MQXF)

Separation/recombination dipoles

Dipole correctors

Higher order correctors

MQXF

- Large aperture: 150 mm
 - → Allows for **smaller beam size** at the interaction points
 - → Allows introduction of **tungsten shielding** to protect the magnet from luminosity debris
- Nb₃Sn technology → Larger operational peak fields (11.4 T)

HL-LHC Nb₃Sn magnets

Wire reception tests 198 Cable manufacturing and reception tests Cable insulation

Coil winding

Coil reaction

Impregnation

Collaring

Cold mass assembly

DE NOUVELLES TECHNOLOGIES POUR LE LHC À HAUTE LUMINOSITÉ (HL-LHC)

de service à proximité d'ATLAS et de CMS.

avec des ions.

June 2022: MQXFBP2 and corrector MCBXFBP1 on the alignment bench

Separation/re-combination dipole (D2 - INFN) cold mass assembly – Large Magnet Facility

Point 1 surface buildings

Underground works at P5

US57 cavern

PM57 shaft

Then another miracle happens...

Year	ppb	Virtual lumi.	Days in	θ	$eta_{ m start}^*$	$eta_{ m end}^*$	CC	Max.
	$[10^{11}]$	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	physics	[μ rad]	[cm]	[cm]		PU
2029	1.8	4.4	90	380	70	30	exp	116
2030	2.2	9.7	120	500	100	30	on	132
2031	2.2	11.3	160	500	100	25	on	132
2032	2.2	13.5	160	500	100	20	on	132
2033-34 Long shutdown 4								
2035	2.2	13.5	140	500	100	20	on	132
2036	2.2	16.9	170	500	100	15	on	132
2036	2.2	16.9	200	500	100	15	on	200

Conclusions

Run 1 & 2 legacy

- Complex operations well mastered
- Excellent system performance and availability

Run 3

First Stable Beams at 16:00 tomorrow...

LHC Injectors Upgrade

Successful deployment in LS2, essential for what follows

HL-LHC

- Paving the way from Run 3 to Ultimate performance
- Completion of prototypes and start of series production for many components interesting times!

Acknowledgements and thanks to everyone in ATS, our colleagues from across the organization, and our international collaborators.

