

Experimental Outlook for Run 3 and the HL-LHC

Elizabeth Brost, on behalf of the ATLAS and CMS collaborations July 4th, 2022

Higgs@10 Symposium - CERN, Geneva, Switzerland

The LHC schedule, from the ATLAS and CMS perspective

LHC proton-proton dataset

10 years later, what are we planning?

A detailed exploration of the mechanism of electroweak symmetry breaking through the properties of the Higgs boson, including:

- Couplings to other SM particles, mass, and width
- Rare decays
- HH cross section and trilinear self-coupling
- Connections to new physics through Higgs sector?

Cross sections from the LHC Higgs Working Group

Larger center-of-mass energy = larger Higgs cross sections

Challenge: Pileup

High pileup environment at the HL-LHC brings new challenges: detector irradiation, higher detector occupancy, higher trigger rates

(with pileup 200)

Experiment Upgrades for the HL-LHC

The harsh conditions at the HL-LHC will challenge the experiments in all areas, and will require improvements to:

- Detectors themselves
- Trigger menu and hardware
- Event reconstruction
- Software & computing
- Physics analysis techniques

ATLAS ATLAS Detector Upgrade

CMS Detector Upgrade

Electronics upgrade: barrel calorimeters and muon system

Extended muon coverage to $|\eta| \sim 2.8$

coverage to Jiji 2.0

NEW MIP timing detector with 30 - 50 ps time resolution

Upgraded Trigger and Data Acquisition system:

- Add tracks at L1 (1 MHz)
- High Level Trigger output 7.5 kHz

NEWHigh-granularity calorimeter

endcap

NEW Inner Tracker, coverage up to $|\eta| = 4$, reduced material

Recent efforts for HL-LHC projections

<u>European Strategy Update</u> (2018-2020)

"The European Strategy for Particle Physics provides a clear prioritisation of European ambitions in advancing the science of particle physics. It takes into account the worldwide particle physics landscape and developments in related fields"

Snowmass Community Planning Exercise (2020-2022)

"The Particle Physics Community Planning Exercise (a.k.a. "Snowmass") ... provides an opportunity for the entire particle physics community to come together to identify and document a scientific vision for the future of particle physics in the U.S. and its international partners."

→ ATLAS and CMS produced many new HL-LHC projections for Snowmass this year, and I will focus on these results today

How HL-LHC projections are made

- Start from:
 - published LHC Run 2 results, or
 - simulations (usually using a simplified detector simulation such as DELPHES)
- Adapt to HL-LHC conditions:
 - center-of-mass energy: 13 TeV → 14 TeV
 - \circ pileup: $30 \rightarrow 200$
 - o larger dataset: 150 fb⁻¹ → 3000 fb⁻¹
 - simulated detector and reconstruction performance
 - theory and experimental uncertainties: usually present a few scenarios
- We already see the effect of advancements in analysis techniques since the last round of projections!

Systematic Uncertainties

- Baseline scenario:
 - detector and trigger performance comparable to Run 2
 - \circ most experimental uncertainties scaled down with $\sqrt{\mathcal{L}}$
 - theoretical uncertainties halved with respect to current values
 - 1% luminosity uncertainty
 - used in these studies, unless otherwise specified
- Studied improvements to object reconstruction and the impact of detector upgrades, using simulation

The Higgs boson at the HL-LHC

- Higgs couplings move into precision regime
 - those not dominated by statistical uncertainty will be known at few-% level
 - most dominated by theory uncertainties
- More difficult to access at the HL-LHC:
 - Higgs coupling to charm, invisible
 - Higgs self-coupling

Higgs coupling to charm, bottom

Use VH production mode to probe H(bb) and H(cc) couplings

Observation of Higgs coupling to charm will be difficult to achieve at the HL-LHC - new analysis techniques, such as the use of multivariate techniques and jet substructure variables, are making great progress in the right direction

Higgs coupling to muons

- H → μμ projection based on the CMS Run 2 3σ evidence analysis
- Estimate increases in signal and background yields due to new detectors
 - larger muon η acceptance
 - use DELPHES simulation
- Improvement over previous projection: ~ 30%

Searches for Higgs → invisible

The SM Higgs branching ratio to invisible is below current O(10%) experimental limits: $BR(H\rightarrow ZZ\rightarrow 4v) \sim 0.1\%$

Higgs → invisible searches rely on the MET trigger - significantly more difficult with more pileup

 CMS search for H → dark matter in VBF events: BR(H → invisible) < 3.8%, for MET > 190 GeV

 \rightarrow ATLAS+CMS VBF+VH combination gives BR(H \rightarrow invisible) < 2.5%

CERN-2019-007

Higgs pair production is rare at the LHC...

...1000x more rare than single Higgs production. HH searches are stats-limited.

We've already seen a factor of ~1.7 improvement due to improved reconstruction and analysis techniques in full Run 2 dataset (compared to simple projection based on √ℒ)

SM expectation within reach for Run 3 limits if we:

- Continue the same pace of analysis improvements, or
- Combine ATLAS+CMS results

HH projections for the HL-LHC

- Combination of 5 HH channels, many based on partial Run 2 analysis strategy
- 50% precision on self-coupling
- 4σ SM HH significance (ATLAS+CMS) —

Snowmass update (2022)

- ATLAS γγbb+bbττ combination: 3.2σ
- CMS updated γγbb results, added γγWW, γγττ, ttHH(bbbb)
- 5σ SM HH significance from back-of-the-envelope combination

Conclusions and Outlook

- ATLAS and CMS detector upgrades will maintain or improve upon current performance
 - Phase 1 upgrades already being exercised as Run 3 begins
- HL-LHC will bring new challenges
- Hard work and creativity in reconstruction and analysis techniques already evident since last round of projections
 - Imagine what we can do in the next twenty years!

A simulated HL-LHC event in the ATLAS Inner Tracker, with 40 signal muons plus pileup of 140.

BACKUP

