
Offloading tools

ACTS Parallelization Meeting
04.03.2022

Page 2

Motivation

 Performance → How well a task was done
 (e.g. wall clock time)

● Software application’s

 Efficiency → How well the resources are used

 (e.g. portability, GPU usage)

● Nevertheless, both depend on the software’s ability to expose
parallelism (e.g. latest hardware & sequential code ensures neither
performance nor efficiency)

● Trade-off solutions: Kokkos, SYCL, HIP, oneAPI, OpenMP, …

● This talk focuses on yet another alternative, but motivated by
efficiency rather than performance!

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Performance

Portability

Page 3

Proposed requirements

● Easy to use in plain C++ & limited code changes to adopt the API
● Abstract the notion of architecture (as much as possible)
● Support single-source code & generated code for different

targets/optimizations
● Compilable by main stream C++ compilers (e.g. clang)
● Portable target shared-memory CPU and NVIDIA/AMD GPUs (and →

potentially Big Data platforms: Google Cloud/AWS)
● Good (but most likely not peak) performance

 Do you see the benefits of such an API?

 Is there anything missing?

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Page 4

 Two-piece puzzle
● API “marks” the parallel regions and offloads the computations to →

different architectures (same code base for all back-ends)

─ Header-only library which can be used independently from the tool

─ Relies heavily on vecmem data structures & memory models

─ Preconditions: no STL, thread-safe code

● Clang-tool code duplication, validations and source-to-source →
translation (different code bases for different back-ends)

─ Implemented on top of clang-tooling mechanism

─ Generates extra code if needed (e.g. add function attributes)
─ Ensures further code optimizations for different architectures
─ Preconditions: projects built with cmake

Clang-offload framework

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Page 5

API

 Concerns when automatically offload & distribute computations

1) Memory allocations & transfers

2) Transfer function pointers and/or functor object pointers to the device

3) Distribute the computations based on thread index

Input from the user is needed abstractions!→

Page 6

API – Offload

 Data offloading
● Use vecmem vectors as iterable datasets
● If the input data is allocated in

─ managed memory intermediate and final results are allocated on →
the device/managed memory

─ host memory copy to device, allocate results on both host/device, →
copy results back to host

Function offloading

● Work around the polymorphism’s restriction on the GPU by lambda
captures

─ In some scenarios, constructing the object on the device can still be
needed

Page 7

API – Distribute computations

Abstractions from functional programming
● (map f coll) apply f to each element of the collection; the output is →

another collection of the same size with elements of the same/other
type
─ (map inc `(1 2 3)) → (2 3 4) // same size, same/different type

─ (map toSpacePoints measurements) → (sp1 sp2.. spN)

● (filter p coll) keep in the output collection only the elements from the →
input collection which satisfy the predicate p
─ (filter even? `(1 2 3)) → (2) // same/smaller size, same type

─ (filter isAboveThreshold? `(sp1 sp2 sp3)) → (sp1 sp2)

● (reduce f coll init) reduce the elements of the collection using →
function f and store it in the result initialized with init
─ (reduce + `(1 2 3) 0) → (6)

 Do these abstraction cover all scenarios?

Page 8

template<typename Ri, typename... Args>
struct parallelizable_map_reduce_algorithm {

 virtual Ri& map(Ri& result_i, Args... args) = 0;

 virtual Ri* reduce(Ri* result, Ri& partial_result) = 0;

}

template<typename R, typename Ri, typename... Args>
struct parallelizable_map_filter_algorithm {

 virtual Ri& map(Ri& result_i, Args... args) = 0

 virtual bool filter(Ri& partial_result) = 0;

}

API – Distribute computations

Page 9

// init memory resource (could as well be managed_memory here)
vecmem::host_memory_resource mr;

// define and init vector vec
...

// instantiate the algorithm
my_algorithm alg(mr);

// call the algorithm in sequential mode
vecmem::vector<double> result = alg(vec);

// call the algorithm in parallel mode
vecmem::vector<double> result = api::parallel_algorithm(alg, mr, vec);

API – Code snippet – Seq vs par algorithm

Page 10

// init memory resource (could as well be managed_memory here)
vecmem::host_memory_resource mr;

// define and init vector vec and all the other input params
...

Another_object x();

// instantiate the algorithm
my_algorithm alg(mr);

// call the algorithm in sequential mode
vecmem::vector<double> result = alg(vec, x);

// call the algorithm in parallel mode
vecmem::vector<double> result = api::parallel_algorithm(alg, mr, vec, x);

API – Code snippet – Seq vs par algorithm

Page 11

// init memory resource (could as well be managed_memory here)
vecmem::host_memory_resource mr;

// define and init vector vec
...

// instantiate the algorithms
my_algorithm1 alg1(mr);
my_algorithm2 alg2(mr);

// call algorithms in parallel mode
vecmem::vector<double> result1 = api::parallel_algorithm(alg1, mr, vec);
double result2 = api::parallel_algorithm(alg2, mr, result1);

// OR EQUIVALENT
api::parallel_algorithm(alg2,mr, api::parallel_algorithm(alg1, mr, vec));

API – Code snippet – More algorithms

Page 12

API – Code snippet – Simple functions

 ● Ad-hoc offload offload & parallelization using managed memory

// if vec is allocated in managed memory
api::parallel_map(vec.size(), [=] __device__ (int idx,
 vecmem::data::vector_view<int>& vec_view) mutable {
 vecmem::device_vector<int> d_vec(vec_view);
 // add code here
 }, vecmem::get_data(vec));

Page 13

API – Code snippet – Simple functions

 ● Ad-hoc offload offload & parallelization using host memory

// if vec is allocated in host memory
vecmem::cuda::device_memory_resource d_mem;
vecmem::cuda::copy copy;

// copy host to device
auto vec_buffer = copy.to(vecmem::get_data(vec), d_mem,
vecmem::copy::type::host_to_device);

api::parallel_map(vec.size(), [=] __device__ (int idx,
 vecmem::data::vector_view<int>& vec_view) mutable {
 vecmem::device_vector<int> d_vec(vec_view);
 // add code here

 }, vecmem::get_data(vec_buffer));

// copy device to host
copy(vec_buffer, vec, vecmem::copy::type::device_to_host);

Page 14

 Steps
● Duplication

─ Copy the code into a new folder
because the changes are destructive

● Validation

─ GPU backends: Identify STL calls in
the C++ code

● Code modification

─ (if needed) Annotate functions from
the AST rooted in the API call

─ Hardware-aware optimizations

● (Optional) Compile & link executable for the given backend →

Clang-tool

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Page 15

Development status – API

 ● Done
─ Basic infrastructure to support the execution of a (parallelizable)

algorithm and/or a lambda function using CPU OpenMP and CUDA
─ Kernel configuration based on problem size
─ Unit tests based on google test library

● On-going
─ Extend kernel parametrization to include memory considerations and

hardware capabilities
─ More efficient reductions/filtering

● Proposed next
─ Algorithm composition API
─ Add support for AMD backend
─ Extend the offloading functions to support jagged-vectors (if needed)

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Page 16

Development status – clang-tool

 ● Done
─ Basic tooling infrastructure for backends: CPU OpenMP, GPU

OpenMP and GPU CUDA
─ Polymorphic validators (STD checker), translators and builders

● On-going
─ Adapt the translators based on the latest changes in the API
─ Automated tests

● Proposed next
─ Performance optimizations for tailored for backends

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

Page 17

Outlook

 ● When on-going dev is complete, make the API repository public
(~1 week)

● Any feedback is highly appreciated!

─ Could these tools be somehow useful to ACTS?

─ What benefits would they need to provide in order to be adopted?

─ Name suggestions?
● Test on an algorithm from traccc. Any recommendation?

Thank you!

| Georgiana Mania | ACTS Parallelization Meeting, 04.03.2022

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

