CMS B. de la Cruz, I. Bachiller, J. Alcaraz (CIEMAT) + CMS Collaboration 137 fb⁻¹ pp collision data from CMS during LHC Run2 used to search for new physics For $M_{W'}$ < 1 TeV, limit $g_{W'}/g_{W} > 0.03$ excluded Direct searches, limited by \sqrt{s} A. Wulzer et al 10.1016/j.physletb.2017.06.043 - SM constitutes an effective theory, applicable up to energies not exceeding a certain scale Λ . - Extension of SM at higher energies imply including higher-dimensional operators which appear in the extended-SM Lagrangian as suppressed by powers of Λ. $$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$, With $\Lambda > \sqrt{s}$ A. Wulzer et al 10.1016/j.physletb.2017.06.043 - SM constitutes an effective theory, applicable up to energies not exceeding a certain scale Λ. - Extension of SM at higher energies imply including higher-dimensional operators which appear in the extended-SM Lagrangian as suppressed by powers of Λ . - Using the formalism of the SM effective field theories (SMEFT), truncating the effective expansion at dimension 6 operators, universal new physics effects in 4 fermion contact interactions type appear, which can be conveniently* described by the well-known "oblique parameters" S, T, W and Y. $$\Delta \mathcal{L}_{\text{Universal}} = \frac{S}{16\pi v^2} \mathcal{O}_{WB} - \frac{2\alpha T}{v^2} \mathcal{O}_{HD} - \frac{Y}{2M_W^2} \mathcal{O}_{2B} - \frac{W}{2M_W^2} \mathcal{O}_{2W}$$ * Involving operators of W, Z, γ , Higgs DOI: 10.22323/1.314.0467 /hep-ph/0405040 Phys.Rev. D46 (1992) 381 A. Wulzer et al 10.1016/j.physletb.2017.06.043 - SM constitutes an effective theory, applicable up to energies not exceeding a certain scale Λ . - Extension of SM at higher energies imply including higher-dimensional operators which appear in the extended-SM Lagrangian as suppressed by powers of Λ . - Using the formalism of the SM effective field theories (SMEFT), truncating the effective expansion at dimension 6 operators, universal new physics effects in 4 fermion contact interactions type appear, which can be conveniently* described by the well-known "oblique parameters" S, T, W and Y. $$\Delta \mathcal{L}_{\text{Universal}} = \frac{S}{16\pi v^2} \mathcal{O}_{WB} - \frac{2\alpha T}{v^2} \mathcal{O}_{HD} - \frac{Y}{2M_W^2} \mathcal{O}_{2B} - \frac{W}{2M_W^2} \mathcal{O}_{2W}$$ - * Involving operators of W, Z, γ , Higgs - S, T: induce effects constant with \sqrt{s} current limits coming from fit to EW Precision Observables - W, Y: induce effects that grow with √s → high-energy collider is ideal to test new physics → Highest energies at LHC compensate worse experimental precision ## W, Y parameters W, Y: leading constraints on W, Y from off-pole measurements at LEP2, but 8 TeV LHC results are more stringent → expected to be improved with LHC @13 TeV and HL-LHC in the future $$\begin{pmatrix} S \\ T \\ W \\ Y \end{pmatrix} = \begin{pmatrix} -0.10 \pm 0.13 \\ 0.02 \pm 0.08 \\ (-0.1 \pm 0.6) \times 10^{-3} \\ (-1.2 \pm 0.9) \times 10^{-3} \end{pmatrix}, \quad \rho = \begin{pmatrix} 1 \\ 0.86 & 1 \\ -0.12 & -0.06 & 1 \\ 0.70 & 0.39 & -0.49 & 1 \end{pmatrix}$$ https://arxiv.org/pdf/1706 .03783.pdf Useful Variables: Differential cross sections vs angle (η), invariant mass, M_T Dilepton final states studied at LHC: $qq \rightarrow l+l-$, lv ($l=e, \mu$) ## W, Y parameters W, Y: leading constraints on W, Y from off-pole measurements at LEP2, but 8 TeV LHC results are more stringent → expected to be improved with LHC @13 TeV and HL-LHC in the future $$\begin{pmatrix} S \\ T \\ W \\ Y \end{pmatrix} = \begin{pmatrix} -0.10 \pm 0.13 \\ 0.02 \pm 0.08 \\ (-0.1 \pm 0.6) \times 10^{-3} \\ (-1.2 \pm 0.9) \times 10^{-3} \end{pmatrix}, \quad \rho = \begin{pmatrix} 1 \\ 0.86 & 1 \\ -0.12 & -0.06 & 1 \\ 0.70 & 0.39 & -0.49 & 1 \end{pmatrix}$$ https://arxiv.org/pdf/1706 .03783.pdf Useful Variables: Differential cross sections vs angle (η), invariant mass, m_T Dilepton final states studied at LHC: $qq \rightarrow l+l-$, lv ($l=e, \mu$) $\frac{q}{2}$ Effect of new terms in 4-fermion contact interactions is the modification of SM propagators of neutral (γ , Z) and charged (W) EWK gauge bosons, P(W, Y). - relative deviations wrt SM given by the weight |P(W, Y)/P(W=Y=0)|² - a reweighting on evt-by-evt basis at generator level is possible - $\frac{\mathbf{g^2W}}{\mathbf{m_W^2}}, \frac{\mathbf{g'^2Y}}{\mathbf{m_W^2}} o \frac{\mathbf{C}}{\mathbf{Scale}^2}$ Terms in the interference between SM and New Physics, related to the ratio coupling/scale of NP $$qq \rightarrow lv (l=e, \mu)$$ $$\left| \frac{P(W, Y)}{P(W=Y=0)} \right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2} \right)^{\frac{1}{2}}$$ (t²=tangent squared of SM weak mixing angle ~ 0.3) W d_L $v_{l,L}$ u_L $v_{l,L}$ d_L l_L^+ d_L l_L^+ - Relevant term at high energy is the last one, depending on q² - Iv final state is sensitive to W, independent of Y at high energy. - Only info needed at generator level is q^2 , i.e. ly invariant mass $$qq \rightarrow lv (l=e, \mu)$$ $$\begin{vmatrix} P(W,Y) \\ P(W=Y=0) \end{vmatrix}^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2}\right)^2$$ - (t^2 =tangent squared of SM weak mixing angle ~ 0.3) - Relevant term at high energy is the last one, depending on q² - Iv final state is sensitive to W, independent of Y at high energy. - Only info needed at generator level is q^2 , i.e. lv invariant mass $$qq \rightarrow lv (l=e, \mu)$$ $$\left| \frac{P(W, Y)}{P(W=Y=0)} \right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2} \right)^{\frac{1}{2}}$$ (t²=tangent squared of SM weak mixing angle ~ 0.3) - Relevant term at high energy is the last one, depending on q² - Iv final state is sensitive to W, independent of Y at high energy. - Only info needed at generator level is q^2 , i.e. lv invariant mass $$qq \rightarrow l^+l^- (l=\mu)$$ Weight $$(q^2, z, W, Y) = \frac{\left[\frac{d\sigma}{dz}(q^2, z, W, Y)\right]}{\left[\frac{d\sigma^0}{dz}(q^2, z)\right]}$$ With $z = \cos\theta$, angle of final state I wrt incoming q in qqbar rest frame - I+I- depends on both W, Y → can constrain both parameters - Info needed at generator level is q^2 (II inv. mass), $\cos\theta$ (could be replaced by CS angle), flavour of incoming q & qbar. #### Constraints on W, Y using 101 fb⁻¹ LHC data W oblique parameter limits improve ~10-fold previous LEP constraints Large potential of LHC data on Y oblique parameter from I+I- final state; less restrictive on W parameter than Iv ### Constraints on W, Y using 101 fb⁻¹ LHC data W oblique parameter limits improve ~10-fold previous LEP constraints Large potential of LHC data on Y oblique parameter from I+I- final state; less restrictive on W parameter than Iv Projection by A. Wulzer et al using Run 1 &2 ATLAS and CMS data https://arxiv.org/abs/1609.08157 ## Higgs Compositeness Constraints on W & Y oblique parameters can be used to set bounds on several types of new models, among them Higgs Compositeness. Higgs boson as bound state (eg new strong interaction) \rightarrow new set of composite resonances (W', Z',...) - new layer of complexity, m* - coupling to SM particles (g^*) or resultant of integrating out the new states (g/g^*) $$\frac{c_{\phi}}{\Lambda^2} = \frac{g_*^2}{m_*^2}$$ # Indirect bound from W oblique parameter ## Direct bound from search for W' #### **SSM:** W' decay only to fermions Limit set by the **W' coupling strength limit** with Γ (W')/m(W') < 5% narrow resonance assumption. $$g_{W'} = \frac{g_W^2}{g_*}$$ $g_*^2 < \frac{m_W^2 g^2}{m_*^2 W}$ #### **HVT:** W' decay to fermions+bosons Limit set by the W' coupling strength from HVT model where widths and cross sections are consistent with **bosonic and fermionic** couplings. $$g_{\mathrm{W'}} = \frac{g_{\mathrm{W}}^2}{g_*}$$ $\Gamma_{HVT} = \Gamma_{SSM} + \frac{M_{\mathrm{W'}}g_*^2}{48\pi}$ Limited by \sqrt{s} ## Bounds on Higgs Compositeness Using Higgs cross section strength, µ, measurement at CMS Higgs Compositeness excluded below 1 TeV (HVT) or 3 TeV (SSM) # Thank you