WW scattering at colliders: a window to new Higgs Physics

Universidad Autónoma de Madrid, IFT-UAM

María José Herrero Solans

6th Red LHC Workshop, Madrid, 10 May 2022

Various BSM Higgs studies via WW scattering (=WBF) Access to λ_{HHH} , V_{HWW} , V_{HHWW} in HH at e+e-Non-Access to λ_{HHH} and λ_{HHHH} in HHH at e+eresonant 2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez Studied Access to λ_{HHH} in HH at LHC in EFT 1807.09736, Nucl. Phys. B 945 (2019) 114687, Arganda, García-García, Herrero FIRST proposal, predictions and HL-LHC prospects for κ_{λ} via WBF were done in our work 3 years ago. Other works focused only on GGF. Recently, LHC collaborations testing this sensitivity to κ_{λ} via WBF and setting improved constraints. Access to λ_{hhh} , λ_{hhH} , λ_{hHH} , λ_{hAA} in h_ih_i at e+e-Resonant 2106.11105, EPJC 81 (2021)10, 913, Arco, Heinemeyer, Herrero Studied

Heavy H in 2HDM is resonant in WW \rightarrow hh : efficient window to λ_{hhH} n 2HDM

Also recent work ongoing with Roberto Morales, Daniel Domenech, Maria Ramos: NLO EFT in WW scattering: HEFT and SMEFT

WW ----> HH in SM

HH and HHH production at colliders via VBS (=WBF)

2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez

Finding correlation/uncorrelation between HHH and HHHH is one of the Golden Tasks for future colliders (ee and LHC)

 $\lambda_{\rm HHH}$ involved in WW — $\lambda_{\rm HHHH}$ only involved in

Remember that within SM : $V_{HWW} = v V_{HHWW}$ and $V_{HHH} = v V_{HHHH}$ due to H in a doublet Any deviation to these correlations may indicate physics BSM

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

For e+e-: other HH and HHH production mechanisms suppressed at TeV respect to WW

Similar mechanism At LHC with leptons replaced by quarks

^[1a]ATLAS, Phys. Rev. D **101** (2020) [1909.02845] ^[1b]ATLAS-CONF-2020-027. Best fit $\kappa_V = a = 1.03 \pm 0.03$

Behavior with energy (LO-HEFT)

2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

$b \neq a^2$

HH : Strong enhancement at large \sqrt{s} for $b \neq a^2$ Unitarity violation above few TeV Warning: $\kappa_{2V} = 0$ violates unitarity Sensitivity to κ_3 close to threshold

HHH : Similar behavior at large \sqrt{s} as in the SM (shifted upwards) No unitarity constraints on κ_3 , κ_4 Max sensitivity to κ_3 close to threshold

Behavior with energy (NLO-HEFT, chi-dim=4)

Some prelíminar results (D. Domenech, M. Herrero, R. Morales, M. Ramos, 2022)

† UV= to the right of this point prediction enters in the Unitarity Violating region

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

Largest deviations respect to SM in LL modes

Comparing SMEFT and HEFT : LO and NLO $WW \rightarrow HH$ subprocess

Some prelíminar results (D. Domenech, M. Herrero, R. Morales, M. Ramos, 2022)

$$\mathcal{L}_6 \supset c_{\phi^6} (\phi^{\dagger} \phi)^3 + c_{\phi \Box} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) = c_{\phi D} (\phi^{\dagger} D_{\mu}$$

 $\mathcal{L}_8 \supset c^{(1)}_{\phi^4} (D_\mu \phi^{\dagger} D_\nu \phi) (D^\nu \phi^{\dagger} D^\mu \phi) + c^{(2)}_{\phi^4} (D_\mu \phi^{\dagger} D_\nu \phi) (D^\mu \phi^{\dagger} D^\nu \phi) + c^{(3)}_{\phi^4} (D_\mu \phi^{\dagger} D_\mu \phi) (D^\nu \phi^{\dagger} D^\nu \phi) + \dots$

modes are less affected. At TeV: dim8 compete with dim6 !!

- $_{\iota}\phi)((D^{\mu}\phi)^{\dagger}\phi) + c_{\phi W}(\phi^{\dagger}\phi)W^{a}_{\mu\nu}W^{a\mu\nu}$ $c_i \equiv a_i / \Lambda^2$
- $c_i \equiv a_i / \Lambda^4$
- Again: the largest BSM deviations in Longitudinal modes $W_L W_L \rightarrow HH$ Transverse

HH production also at LHC via WW scattering

1807.09736, Nucl. Phys. B 945 (2019) 114687, Arganda, García-García, Herrero

'To Extract' WW: impose cuts on jets from q3 and q4

and large invariant mass, typically,

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

gg dominates WW: difficult search at LHC

Two opposite-sided forward/backward jets with large pseudorapidity gap $\Delta \eta_{ii} > 4$, $M_{ii} > 500$ GeV , VBS cuts

Our work: first proposal, predictions λ_{HHH} at LHC via WW \rightarrow HH and prospects for HL-LHC

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

1807.09736, Nucl. Phys. B 945 (2019) 114687, Arganda, García-García, Herrero

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

$N_S + N_B$)log	$\left(\frac{N_B}{N_S + N_B}\right)$	$\left(\right) + N_S \right)$	30
------------------	--------------------------------------	--------------------------------	----

	300	1000	3000	
	$\kappa > 4.3 \; (4.8)$	$\kappa > 3.7 \; (4.2)$	$\kappa > 3.2 (3.7)$	
8)	$\kappa < -1.0 \; (-1.7)$	$\kappa < -0.3 \; (-0.8)$	$\kappa < 0 \; (-0.2)$	

	300	1000	3000
2)	$\kappa > 6.4 \ (8.4)$	$\kappa > 4.6 \ (6.0)$	$\kappa > 3.8 (4.7)$
10.0)	$\kappa < -2.7 \ (-4.6)$	$\kappa < -1.1 \ (-2.3)$	$\kappa < -0.2 (-1.0)$

dditional	Signal	Original	With additional considerations
.0, 0-	Signar	Unginai	
fication	$b\overline{b}b\overline{b}jj$	$\kappa > 3.7 (4.2)$	$\kappa > 6.2(7.7)$
e paper)	$b\overline{b}\gamma\gamma jj$	$\kappa > 4.6(6.0)$	$\kappa > 7.7 (9.4)$

Access to 2HDM triple couplings via WW scattering

2106.11105, EPJC 81 (2021)10, 913, Arco, Heinemeyer, Herrero

CLIC (3TeV, 5ab⁻¹) offers the best access to λ_{hhH}

In hh production

1) Non-Resonant

Access to λ_{hhh} at the low m_{hh} region close to hh threshold Similarly to the SM case

2) Resonant

Access to λ_{hhH} via the resonant peak at $m_{hh} \sim m_H$ Viable for a wide range of m_H and $c_{\beta-\alpha}$ values

We find large sensitivity in (4-bjets + missing E_T) events

$$R = \frac{\bar{N}^R - \bar{N}^C}{\sqrt{\bar{N}^C}}$$

$$\bar{N} = N \times A \times (\epsilon_b)^4$$

$$\epsilon_b = 0.8$$

 $\Gamma_H [\text{GeV}]$ $\sigma_{\rm 2HDM}$ [fb] λ_{hhH} $c_{\beta-\alpha}$ 0.10.30 1.241.434 1.2530.120.231.510.140.9720.101.88-0.06 0.908 0.162.48-0.27 0.183.471.3690.2 (BP3)-0.52 5.082.422

 $p_T^b > 20 \,\text{GeV}; \ |\eta^b| < 2; \ p_T^Z > 20 \,\text{GeV}; \ \Delta R_{bb} > 0.4; \ E_T^{\text{miss}} > 20 \,\text{GeV},$

Conclusions

WW scattering at colliders is an efficent window to new Higgs Physics

and will clarify possible correlations: V_{HWW} / V_{HHWW} , $\lambda_{HHH} / \lambda_{HHHH}$,...

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

Multiple Higgs production (HH, HHH,..) will test the most relevant quantities defining the Higgs potential,

WW scattering will also give access to new resonances, like extra heavy scalar particles, vector resonances, etc..

Back up slides

Equivalence Theorem:

- **Examples:**

VBS: An efficient way to test the Higgs Sector of EW Theory within SM and BSM

 $|\mathbf{T}(\mathbf{V}_{\mathbf{I}}^{1}\mathbf{V}_{\mathbf{I}}^{2} \rightarrow \mathbf{V}_{\mathbf{I}}^{3}\mathbf{V}_{\mathbf{I}}^{4})| \simeq |\mathbf{T}(\phi^{1}\phi^{2} \rightarrow \phi^{3}\phi^{4})| + \mathcal{O}(\mathbf{m}_{V}/\sqrt{s})^{n}$

At high energies, longitudinal gauge bosons behave as Goldstone bosons

 $|\mathbf{T}(\mathbf{W}_{\mathbf{L}}^{+}\mathbf{W}_{\mathbf{L}}^{-} \rightarrow \mathbf{W}_{\mathbf{L}}^{+}\mathbf{W}_{\mathbf{L}}^{-})| \simeq |\mathbf{T}(\phi^{+}\phi^{-} \rightarrow \phi^{+}\phi^{-})| \quad |\mathbf{T}(\mathbf{W}_{\mathbf{L}}^{+}\mathbf{Z}_{\mathbf{L}} \rightarrow \mathbf{W}_{\mathbf{L}}^{+}\mathbf{Z}_{\mathbf{L}}| \simeq |\mathbf{T}(\phi^{+}\phi^{0} \rightarrow \phi^{+}\phi^{0})|$

 $|\mathbf{T}(\mathbf{W}_{\mathbf{L}}^{+}\mathbf{W}_{\mathbf{L}}^{-} \to \mathbf{H}\mathbf{H})| \simeq |\mathbf{T}(\phi^{+}\phi^{-} \to \mathbf{H}\mathbf{H})| \qquad |\mathbf{T}(\mathbf{W}_{\mathbf{L}}^{+}\mathbf{W}_{\mathbf{L}}^{-} \to \mathbf{H}\mathbf{H}\mathbf{H})| \simeq |\mathbf{T}(\phi^{+}\phi^{-} \to \mathbf{H}\mathbf{H}\mathbf{H})|$

VV VV SM: HH and HHH: Dominance of WW scattering

$W_L W_L$ dominates $W_T W_T$ and $W_L W_T$

María José Herrero, 6th RedLHC Workshop, IFT, UAM, Madrid, 10 May 2022

(Madgraph5 used for all collider cross section predictions)

The effective W approximation for WW->HH in e+e-:SM

W's are treated as partons inside electrons. Their "PDFs" allow to compute full cross sections from subprocess. [4]

^[4]S. Dawson, Nucl. Phys. B **249** (1985)

Good approximation for HH, not so good for HHH

The effective W approximation for WW->HH in e+e-: BSM

The EWA even better approach for BSM!

THE EREA W LEST AN AND BSM

Effective W Approximation (EWA): Ws & Zs considered as partons inside the proton

[S. Dawson, Nucl. Phys. B 249 (1985) 42]

- They are emitted collinearly from the fermions (quarks) with prob. functions $f_V(\hat{x})$ & then scatter on-shell
- Very intuitive interpretation: factorization using a sort of "PDFs"

$$\sigma(pp \to (V_1 V_2 \to V_3 V_4) + X) =$$

$$\sum_{i,j} \iint dx_1 dx_2 f_i(x_1) f_j(x_2) \iint d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 + X_2) \int d\hat{x}_1$$

We have tested with MG5 the accuracy of various probability functions (SM & EChL cases): Dawson's improved formulas work best

ECHL PARAMETERS Unitarization effects in EFT predictions (example: WZ at LHC)

1907.06668, PRD 100 (2019)9, 096003, García-García, Herrero, Morales

