Digital signal processing, fast simulation and calibration

RootInteractive tutorial, 10/03/2022 Marian Ivanov, Yiota Chatzidaki

https://alice.its.cern.ch/jira/browse/ATO-559 https://alice.its.cern.ch/jira/browse/ATO-568

https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370740/attachments/2402507/4114266/CMITSimulationsGEMTPC.html https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370740/attachments/2402507/4109039/CMITSimulationsGEMTPC.mp4

Simulation of the Common-mode (CM) and Ion-tail (IT) in the GEM-based ALICE TPC

Common-mode effect:

- Source: capacitive coupling between GEM and pad-plane
- Impact: negative undershoot when positive signal is detected
- Characteristics: simultaneous effect, pad-dependent magnitude
- Ion-tail:
 - Source: ions created in GEM4 holes or induction gap
 - Impact: positive tail only in signal pads
 - Characteristics: tail height and slope are pad-dependent

- CM+IT deteriorate the TPC performance → online correction needed
- Goal of studies: guantify impact of CM&IT, develop/optimize corrections 10.03.2022 RootInteractive tutorial, Yiota & Marian

CM correction methods (schematic description)

- We want to calculate the per-pad baseline shift because of the CM on a timebin basis
- Each pad will have a different response due to the pulser variations

IT correction methods (brief description)

Exponential filter IT method

- Filter applied on a channel (=pad) basis
- Three parameters need to be provided:
 - k₀: same for all pads value to be decided based on simulations
 - IT slope and IT fraction:
 - either pad-by pad (if Kr calibration successful) or
 - average correction
 - Performance studies with toy MC

Example correction:

RootInteractive tutorial, Yiota & Marian

Simulation setup

Data-driven toy MC simulation for CM&IT effects and their correction in TPC Goal: quantify impact of CM&IT, optimize corrections (mean bias, RMS)

- 1600 pads with noise, CM fraction, IT parameters sampled from real data
- O(6000) events (each 4000 timebins). For each event:
 - Clusters are randomly generated in pad/time space
 - Signal max. of each cluster following the LHC150 data
 - Signal spread over 3 timebins & 3 pads following a Gaussian distribution
- IT, CM are generated
- Noise, pedestal, rounding is added
- Pedestal correction
- CM correction. Scan correction settings/methods
- 2nd order correction
 Mean IT method
- IT correction. Scan correction settings/methods median
- For each event, we vary the different simulation and correction settings 10.03.2022 RootInteractive tutorial, Yiota & Marian

Neighbors

Simple histogram

LTM histogram

Macroses and data format

https://gitlab.cern.ch/alice-tpc-offline/alice-tpc-notes/-/blob/master/JIRA/ATO-559/cruFilter.C

- Definition of special classes for the pad characteristics (noise, tail parameters, CM parameter)
- Functions for signal, CM, IT generation
- Functions for CM & IT corrections

https://gitlab.cern.ch/alice-tpc-offline/alice-tpc-notes/-/blob/master/JIRA/ATO-559/cruFilterSimul.C

- Setting up the simulation settings (nEvents, nSetups, correction parameter ranges...)
- Running the simulation and storing mean bias and RMS for each setup

		// write out information				
general	C	(*pcstream)	<<	"signalDeltaStat"	<<	
	$\left\{ \right.$	"id="	<<	randomID	<<	
		"nSignal="	<<	nSignal	<<	// n clusters
		"saturFlag="	<<	saturFlag	<<	<pre>// saturation flag if saturation is allowed</pre>
		"saturFraction="	<<	saturFraction	<<	// fraction of saturated pads
	C	"occupancy2="	<<	occupancy2	<<	<pre>// fraction of pads/timebins above thresh 2 ADC</pre>
	(//CM				
CM settings		"MCApplyCM="	<<	rStatMCApplyCM	<<	// apply or not CM in MC
		"statCorCM="	<<	rStatCorCM	<<	// correct type of CM
		// neighbors method				
		"nPadsRandom="	<<	rNPadsRandom	<<	
	ł	"nPadsMin="	<<	rNPadsMin	<<	
		"Qthr1="	<<	rQthr1	<<	
		"Qthr2="	<<	rQthr2	<<	
		"fractionStackGeomCM="	<<	rFractionStackGeomCM	<<	<pre>// fraction of pads (geometrically) checked for baseline estimation</pre>
		"n0K="	<<	n0K	<<	<pre>// number of pads accepted for baseline estimation</pre>
		// LTM method				
		"fractionLTM="	<<	rFractionLTM	<<	
		"binSizeHist="	<<	rBinSizeHist	<<	// *minBinWidth
	-	// IT				
IT settings	ſ	"MCApplyIT="	<<	rStatMCApplyIT	<<	// apply or not IT in MC
		"statCorIT="	<<	rStatCorIT	<<	// correct type of IT
	$\left\{ \right\}$	"fractionIT="	<<	rFractionTail	<<	// fraction of correction
		"statMeanCor="	<<	rStatMeanCor	<<	<pre>// statistic for applying mean correction</pre>
		"factorMeanCM="	<<	rFactorMeanCM	<<	<pre>// multiplicative factor for mean corr. method 1</pre>
		"factorMeanIT="	<<	rFactorMeanIT	<<	<pre>// multiplicative factor for mean corr. method 2</pre>
	ſ	"dMean="	<<	dMean	<<	
ουτρυτ	7	"dRMS="	<<	dRMS	<<	
10 02 2022		"ordStat.="	<<	&ordStat	<<	// truncstat
10.02.2022	Ľ	"\n";				

Dashboard layout

Widgets

- **saturFlagOrd:** saturation effects on/off
- MCApplyCMOrd: CM simulation on/off
- MCApplyITOrd: IT simulation on/off
- statCorCMOrd: CM effect correction method
 - 0 = CM correction off
 - 1-4 = neighbors methods (mean, median, mean 2nd iter., median 2nd iter.)
 - 5-7 = histogram methods (simple hist., COG hist., LTM hist.)
- statCorITOrd: IT correction method
 - 0 = IT correction off
 - 1 = pad correction
 - 2 = median correction
- nPadsRandom: number of pads checked (only for neighbors method)

nPadsMinFraction: nPadsMin/nPadsRandom (fraction of required pads, only for neighbors method)

- Qthr1, Qthr2: threshold values
- fractionStackGeomCM: (geometrical) fraction of pads checked (for neighbors/histogram method)
- fractionLTM: fraction for LTM histogram
- **binSizeHist:** bin size for histogram methods (binSizeHist*0.0625ADC)

general widgets

CM widgets

Widgets

- **fractionIT:** (k₀) fraction for IT correction
- statMeanCorOrd: 2nd order correction method
 - $0 = no 2^{nd}$ order method
 - 1 = mean CM method
 - 2 = mean IT method
- factorMeanCM: scaling factor for mean CM method
- factorMeanIT: scaling factor for mean IT method

• **OptimalCorCMOrd:** optimal CM correction methods (specifying param. Ranges)

- 0 = AII other selections
- 1 = optimal histogram LTM
- 2 = optimal neighbors methods
- 3 = optimal simple histogram method
- OptimalCorITOrd: optimal IT correction method (specifying param. Ranges)
 - 0 = all other selections
 - 1 = optimal IT correction
- Dmean: mean baseline shift
- **DRMS:** RMS
- Occupancy: range of occupancy

IT/ 2nd order corr. widgets

> remaining widgets

Observations (demonstrated in dashboard)

CM on/IT off scenario:

- Impact of CM (@40% occupancy): mean~-5 ADC, RMS increase ~1 ADC (18:30-19:30)
- Bias if 2nd order correction is not applied, @40% occupancy: mean~-0.5 ADC (22:15-23:40)
- Mean, median, mean 2nd iter.: require better tuning than median 2nd iter., but can achieve comparable results (24:25-25:50)
- Histogram "max" method: larger RMS compared to histogram "LTM" (0.2 ADC vs 0.4 ADC increase @ 40% occupancy) → bigger difference in case of CM on/IT on scenario (25:50-28:00)
- Bin size not important in hist methods (between 0.0625 0.3 ADC) (28:00-28:20)
- "Neighbors" and "LTM" methods: similar performance when parameters tuned (28:20-29:40)

• CM off/IT on scenario:

- Impact of IT (@40% occupancy): mean~+1.2 ADC, RMS increase~1.2 ADC (29:40-31:40)
- "Median" method: corrects mean bias but leads to an increased RMS~0.6 ADC increase
- "Pad" method: a value f~85% fully restores mean bias and RMS (32:00-33:20)

• CM on/IT on scenario:

- Significant bias if 2^{nd} order correction is not applied, @40% occupancy: mean~-1.5 ADC
- Complete restoration of baseline bias without increase in RMS with 2nd order correction
- Slightly improved performance of 2nd order mean IT correction, which can also be achieved with mean CM by adjusting the factorMeanCM (33:40-35:00)

How the jupyter notebook works

Get jupyter notebook from my directory in lustre (or directly from gitlab):

/lustre/alice/users/pchatzid/NOTES/alice-tpc-notes/JIRA/AT0-559/parameterScan.ipynb

- Import modules
- Read input file, set aliases
- Create dataframe
- Create additional variables in the dataframe
- Set metadata
- Create dashboard

CM correction methods

"Neighbors" CM method

- Calculate the CM shift by identifying the "empty pads" for each timebin
- To identify a pad as "empty", its charge Q_{pad} must
 - (a) be below a threshold value ($Q_{pad} < Q_{thr1}$) and
 - (b) be comparable to that of "neighboring" pads $(|Q_{pad}/k_{pad} - Q_{rand}/k_{rand}| < Q_{thr2}$ for at least N_{min} of the N_{random} random pads checked)
- Estimators mean or median of the selected empty pads can be used to get Q_{baseline}
- A 2nd iteration (modifying (a) to $Q_{pad} Q_{baseline} < Q_{thr1}$) can improve the results
- "Histogram" CM method
 - Histogram the $Q_{_{pad}}/k_{_{pad}}$ of all pads for one timebin, using appropriate $\ensuremath{\textbf{binSize}}$
 - The hist. maximum should correspond to the average baseline shift
 - Improved results with the "histogram LTM" method, using appropriate fractionLTM

Histogram LTM method - logic

- Moving from left to right, the RMS is calculated at each bin using f% of total histogram entries (f%/2 from left, f%/2 from right)
- Find minimum RMS
- Calculate mean of f% of entries around minimum RMS

Implementation in TStatToolkit (http://alidoc.cern.ch/AliRoot/master/_t_stat_toolkit_8h_source.html)

Improvement in performance is demonstrated later

10.03.2022

RootInteractive tutorial, Yiota & Marian

IT correction methods

Simple exponential filter on a channel-by-channel basis

Histogram method for CM correction

Instead of finding the empty pads and calculating the mean baseline shift for each tb (1) Create a histogram in the FPGA of the $Q_{pad}(t)/k_{pad}$

(2) The empty pads will be found around the peak

Neighbors method for CM correction

```
// Some constants to be set before
int nPadsCRU; // #pads in the current CRU
int nPadsRandom; // #pads, say 10, at random distance to the current to pad. To be
    compared for additional check if the current pad is an empty pad
int nPadsMin; // Minimum #pads, say nPadsRandom/2, required to have Q very close to
    current pad.
float Q_thr1; // Optimized threshold 1 with toy MC; comparable to 2*noise
float Q_thr2; // Optimized threshold 2 with toy MC; comparable to noise
// Main CM correction algorithm
for each timebin{
    // calculate mean baseline of empty pads
    vector <float > Q_pad_array: // array to hold Q of empty pads of a CRU
    for each pad{
        float k_pulser = GetNormQPulser(padID); // from 2D pad-by-pad map
        // simple check if the current pad is empty
        if (Q_pad <= Q_thr1){</pre>
            // additional check if the current pad is empty pad
            int nPadsOK = 0;
            for (int i = 0; i < nPadsRandom; i++){</pre>
                int padRandomID = GetRandomPad(); // randomly select a pad
                float k_pulser_rndm = GetNormQPulser(padRandomID);
                if (abs(Q_pad/k_pulser - Q_padRndm/k_pulser_rndm) < Q_thr2)
                nPadsOK++;
            3
            // if empty, add charge of current pad into array, scale accordingly
            if (nPadsOK >= nPadsMin) Q_pad_array.push_back(Q_pad/k_pulser);
        7
    // calculate mean baseline of the non-signal pads
    Q_baseline = mean(Q_pad_array); // or median
    // apply Common-mode correction
    for each pad{
        float k_pulser = GetNormQPulser(padID); // from 2D pad-by-pad map
        Q_pad = Q_pad - Q_baseline*k_pulser;
```

Main equation (per timebin):

 $N_{\min}/N_{random}, Q_{thr1}, Q_{thr2}$ require optimization

Remaining biases (two different origins)

Remaining biases in case of:

- CM simulation & correction (-0.4 ADC @40%occupancy)
 - Caused due to "signal contamination" (low-signals biasing the CM estimation)

CM+IT simulation & correction (-1.2 ADC @40% occupancy)

- Caused due to "signal contamination" (as before)
- Caused due to <u>"double-correction of IT"</u>

The CM correction (applied before the IT correction), corrects for the **mean baseline** which consists of:

• the CM

• the "mean IT" which shifts the baseline towards less negative values 10.03.2022

Understanding the double correction of the IT

- For a given timebin, the pad "sees" the IT of signals from previous timebins
 - \rightarrow The baseline is shifted towards higher values

• Plotting the Q of all pads for one timebin, the Q distribution is shifted accordingly

2nd order correction methods for remaining biases

• "Mean CM correction": simple rescaling of CM to mitigate residual bias due to signal contamination

"Mean IT correction": exponential filter to mitigate double correction of IT

```
kAmp = factorMeanIT*meanFractionIT; kTime = meanSlopeIT; tailSlopeUnit = exp(-kTime);
cumul = 0;
for each time{
    Fill histQ with Q<sub>pad</sub>/k<sub>pad</sub> values
    float meanBase = histQ→GetMaxPos();
    for each pad{
        Q<sub>pad</sub> += |meanBase|*k<sub>pad</sub>;
        Q<sub>pad</sub> += kAmp*(1-tailSlopeUnit)*cumul;
    }
    cumul+=|meanBase|; cumul*=tailSlopeUnit;
}
```

Either can be used as a 2nd order correction. Effect demonstrated in dashboard RootInteractive tutorial, Yiota & Marian

Ion-tail correction - reminder

Simple exponential filter as an approximation of unfolding

Observations (demonstrated in dashboard)

CM on/IT off scenario:

- Impact of CM (@40% occupancy): mean~-5 ADC, RMS increase ~1 ADC
- Bias if 2nd order correction is not applied, @40% occupancy: mean~-0.5 ADC
- Mean, median, mean 2nd iter.: require better tuning than median 2nd iter., but can achieve comparable results
- Histogram "max" method: larger RMS compared to histogram "LTM" (0.2 ADC vs 0.4 ADC increase @ 40% occupancy) → bigger difference in case of CM on/IT on scenario
- Bin size not important in hist methods (between 0.0625 0.3 ADC)
- "Neighbors" and "LTM" methods: similar performance when parameters are tuned

• CM off/IT on scenario:

- Impact of IT (@40% occupancy): mean~+1.2 ADC, RMS increase~1.2 ADC
- "Median" method: corrects mean bias but leads to an increased RMS~0.6 ADC increase
- "Pad" method: a value f~85% fully restores mean bias and RMS

• CM on/IT on scenario:

- Significant bias if 2nd order correction is not applied, @40% occupancy: mean~-1.5 ADC
- Complete restoration of baseline bias without increase in RMS with 2nd order correction
- Slightly improved performance of 2nd order mean IT correction, which can also be achieved with mean CM by adjusting the factorMeanCM

Conclusions

- Effects well-understood and under control
- CM correction method to be decided
 - Methods "neighbors" and "histogram LTM" work well if parameters are tuned
 - Simple histogram method has increased bias
 - Histogram LTM requires only one tune parameter (fractionLTM)
- IT correction method is finalized
 - IT parameters used to be decided based on success of Kr. calibration

• 2nd order correction method to be decided

- Both should be straightforward to implement
- Both can lead to full restoration of baseline, by selecting the tune factor