dE/dx - Q correction
N-dimensional pipeline

Perform Toy-MC to create trees (c++)
https://github.com/AliceO2Group/AliceO2/pull/8196

Filtering of the data (c++)

N-dim Random forest regression (python, scikit-learn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109728/ML_5D_RF.py

Interactive visualisation of RF-model and polynomials (RootInteractive)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109757/RootInteractive_visualisation.ipynb

Parametrisation of trained RF-model with N-dim polynomials (python, scikit-learn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109743/make_polynomial_fits_and_create_RootInteractive_trees.py

Creating c++ objects of N-dim polynomials
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109780/Create_c_Polynomials.cxx
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track.
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons

\[z_1 = v_D \cdot t_1 \]
\[z_2 = v_D \cdot t_2 \]
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons

2. Local track inclination angle θ

\[
Q^* = \begin{cases} 1 & \text{Track 1} \\ \text{Track 2} & \end{cases}
\]

Read out plane

Pad

Toy-MC

Track 1

100 < z < 150 | sin(\varphi) | < .2

region 0

Toy-MC

Track 2

100 < z < 150 | sin(\varphi) | < .2

region 0

Q_{Max} (a.u.)

Q_{Tot} (a.u.)

$\tan(\theta)$

$\tan(\theta)$

$\tan(\theta)$

$\tan(\theta)$
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons
2. Local track inclination angle θ
3. Local track angle ϕ over pads

![Diagram showing track topology correction](image)
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons
2. Local track inclination angle θ
3. Local track angle φ over pads
4. Relative pad position of the track
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons

2. Local track inclination angle θ

3. Local track angle ϕ over pads

4. Relative pad position of the track

5. Relative time position of the track
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

 1. Diffusion: Drift length of the electrons
 2. Local track inclination angle θ
 3. Local track angle φ over pads
 4. Relative pad position of the track
 5. Relative time position of the track
 6. Zero suppression threshold
 - Only Q_{Tot}
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons
2. Local track inclination angle θ
3. Local track angle φ over pads
4. Relative pad position of the track
5. Relative time position of the track
6. Zero suppression threshold
7. dE/dx: Only Q_{Tot}
Track topology correction

- Cluster charge Q_{Tot} and Q_{Max} depends strongly on the topology of the track

1. Diffusion: Drift length of the electrons
2. Local track inclination angle θ
3. Local track angle ϕ over pads
4. Relative pad position of the track
5. Relative time position of the track
6. Zero suppression threshold

7. dE/dx: Only Q_{Tot}
 - Q_{Tot} is measured: convert dE/dx to $\langle Q_{\text{Tot}} \rangle$
 - $\langle Q_{\text{Tot}} \rangle$ extracted by multidimensional Random Forrest fit
N-dimensional pipeline

Perform Toy-MC to create trees (c++)
https://github.com/AliceO2Group/AliceO2/pull/8196

Filtering of the data (c++)

N-dim Random forrest regression (python, sklearn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109728/ML_5D_RF.py

Parametrisation of trained RF-model with N-dim polynomials (python, sklearn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109743/make_polynomial_fits_and_create_RootInteractive_get_trees.py

Interactive visualisation of RF-model and polynomials (RootInteractive)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109757/RootInteractive_visualisation.ipynb

Creating c++ objects of N-dim polynomials
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109780/Create_c_Polynomials.cxx
Track topology correction

Perform regression of the dependencies using Random Forrest ML algorithm

- Q_{Tot}: Fit $Q_{Tot} \frac{dE}{dx} (z, \tan(\theta), \sin(\varphi), threshold, \langle q\text{Tot} \rangle)$
 - rel. pad and rel. time is neglected
- Q_{Max}: Fit $Q_{Max} \frac{dE}{dx} (z, \tan(\theta), \sin(\varphi), rel.\text{ Pad}, rel.\text{ Time})$

Application during reconstruction

- Fit the trained RF model for each region using fourth degree 5D-polynomials
N-dimensional pipeline

Perform Toy-MC to create trees (c++)

https://github.com/AliceO2Group/AliceO2/pull/8196

Filtering of the data (c++)

N-dim Random forest regression (python, sklearn)

https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109728/ML_5D_RF.py

Interactive visualisation of RF-model and polynomials (RootInteractive)

https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109757/RootInteractive_visualisation.ipynb

Creating c++ objects of N-dim polynomials

https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109780/Create_c_Polynomials.cxx

Parametrisation of trained RF-model with N-dim polynomials (python, sklear)

https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109743/make_polynomial_fits_and_create_RootInteractive_trees.py
Track topology correction

Perform regression of the dependencies using Random Forrest ML algorithm

- Q_{Tot}: Fit $\frac{Q_{\text{Tot}}}{dE/dx} (z, \tan(\theta), \sin(\phi), \text{threshold}, \langle q_{\text{Tot}} \rangle)$
 - rel. pad and rel. time is neglected
- Q_{Max}: Fit $\frac{Q_{\text{Max}}}{dE/dx} (z, \tan(\theta), \sin(\phi), \text{rel. Pad, rel. Time})$

Application during reconstruction

- Fit the trained RF model for each region using fourth degree 5D-polynomials
 - RootInteractive dashboards for easy multidimensional representation

Graphs

- Q_{Max} dependencies
- Q_{Tot} dependencies
N-dimensional pipeline

Perform Toy-MC to create trees (c++)
https://github.com/AliceO2Group/AliceO2/pull/8136

Filtering of the data (c++)

N-dim Random forest regression (python, sklearn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109728/ML_5D_RF.py

Filtering of the data

Creating c++ objects of N-dim polynomials
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109780/Create_c_Polynomials.cxx

Interactive visualisation of RF-model and polynomials (RootInteractive)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109757/RootInteractive_visualisation.ipynb

Parametrisation of trained RF-model with N-dim polynomials (python, sklearn)
https://indico.cern.ch/event/1135398/contributions/4764024/subcontributions/370741/attachments/2402893/4109743/make_polynomial_fits_and_create_RootInteractive_trees.py
Track topology correction

Remaining residual dependencies due to: uncertainty of electron attachment in Toy-MC, cluster below threshold…