

Introduction

Flow studies from an LHCb perspective

- Flow has been extensively studied at RHIC and LHC
 - A wealth of precise and sophisticated measurements from pp to AA collisions
 - LHCb trying to be a newcomer in the field
- The LHCb detector
 - Forward fully instrumented spectrometer (small Bjorken-x, lower energy density, direct photon...)
 - Designed to study heavy flavor (with low p_T coverage)
 - Excellent performance at small colliding systems (pp and pPb)
 - Fixed-target program (gas target of different sizes)
- Recent flow results in small systems
- A few flow analyses ongoing at LHCb

- Most of the signatures of hydrodynamic flow in A+A collisions also existed in smaller systems.
 - Difference in small systems: exist only in high multiplicity events, jet quenching/energy loss not observed
- Origin of the flow in small systems under debate:
 - Hydrodynamic evolution of a high density partonic medium
 - Gluon saturation in the framework of a color-glass-condensate

• Others...

PHENIX small system scan p+Au, d+Au and ³He+Au collisions

Nat. Phys. 15, 214–220 (2019)

- Flow in small system driven by initial geometry
- Hydrodynamics translate the initial geometry into dynamical v_n
- Cannot be reproduced from initial state effects only PRL 123, 039901 S 0.10

$$v_2^{\text{p+Au}} < v_2^{\text{d+Au}} \approx v_2^{\text{3He+Au}}$$

Elliptic flow

$$v_3^{\text{p+Au}} \approx v_3^{\text{d+Au}} < v_3^{\text{3He+Au}}$$

Light flavor in pp collisions

- Identified light hadron flow
- Mass ordering at low p_T
- Baryon-meson splitting at intermediate p_T
- Similar to pA and AA collisions

Light flavor in pPb collisions

- Identified light hadron flow
- Mass ordering at low p_T
- Baryon-meson splitting at intermediate $p_{\rm T}$
- Models combine hydrodynamics, quark coalescence, and jet fragmentation
- Cannot describe data without quark coalescence
 partonic collectivity

Light flavor in pPb collisions

- Identified light hadron flow
- Mass ordering at low p_T
- Baryon-meson splitting at intermediate $p_{\rm T}$
- Models combine hydrodynamics, quark coalescence, and jet fragmentation
- Cannot describe data without quark coalescence
 partonic collectivity

Strangeness and heavy flavor in pp collisions

- HF collectivity can potentially separate initial vs final-state effects
- Measured v_2 of muons produced in the semi-leptonic decays of b and c hadrons.
- Significant anisotropy observed for charm: comparable to inclusive hadrons.
- v_2 for muons from b decays consistent with zero.
- $J/\psi v_2$ consistent with 0.
- These HF anisotropy measurements can lead to further understanding of origin of the *pp* ridge

Strangeness and heavy flavor in pp/pPb collisions

• Significant anisotropy observed for D^0 :

PED CHALLENGES

• pp comparable to pPb at similar multiplicity

Strangeness and heavy flavor in pPb collisions

Phys. Lett. B 813 (2021) 136036

- Mass ordering:
 - lighter hadrons have larger v_2
- D^0 meson:
 - v_2 (non-prompt) < v_2 (prompt)
- Prompt $D^0 v_2 \sim \text{prompt } J/\psi v_2$
- Provide information on heavy flavor flow collectivity in small systems

Upsilon in pPb collisions

- Flow of quarkonia is a useful tool to study the path-length dependent modification effect and collectivity of heavy flavors
- PbPb:
 - $\Upsilon(1S)$ v_2 consistent with 0
- *p*Pb:
 - $\Upsilon(1S)$ v_2 consistent with 0

Upsilon

• J/psi:

- PbPb: large v_2 at low p_T from recombination effect
- pPb: Non-zero v_2
- \bullet $\Upsilon(1S)$:
 - PbPb & pPb: v_2 consistent with 0

Different behavior between charmonia and bottomonia

CMS PAS-HIN-21-001

Flow across colliding systems

- An incomplete summary of flow measurements
 - Measurements from UPC and ee, ep systems not included

flow signals?

	Light hadron	Strangeness	Prompt D	b —> D	Prompt J/psi	b —> J/psi	Upsilon	Dijet	Z boson	Photon
PbPb	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes
<i>p</i> Pb	Yes	Yes	Yes	No	Yes		No			
pp	Yes	Yes	Yes	No	No					

LHCb detector

Run2 configuration

- ► Acceptance: $2 < \eta < 5$
- ➤ Vertex detector (VELO)
 - IP resolution $\sim 20 \mu m$
- ➤ Tracking system

•
$$\frac{\Delta p}{p} = 0.5 - 1\%$$

(5-200 GeV/c)

- ➤ RICH
 - $K/\pi/p$ separation
- ➤ Electromagnetic + hadronic calorimeters
- ➤ Muon system
- ➤ Results presented in this talk are based on this configuration

➤ A single arm spectrometer in forward rapidity, optimized in measuring particles containing *s*, *c* or *b* quark.

JINST 3 (2008) S08005

Already upgraded for Run3! more later

LHCb in heavy ion physics

Collider mode

- Designed to measure heavy flavor
- Excellent for studying pp/pPb collisions
 - Constrain nPDF at small and large Bjorken-*x*
 - Probe gluon saturation in low x and low Q^2 region
 - Test hadronization mechanisms in medium
 - Study final state effects in medium
 - Search for possible QGP droplet formation in small systems
- How about flow/correlations in LHCb?
 - Forward rapidity
 - Reach into very low *x* region
 - Strong capabilities with small colliding systems and heavy flavor

Study of small-x at LHCb

PhysRevLett. 128 (2022)142004 arXiv:2204.10608 Accepted by PRL

Prompt charged particle and π^0 in pPb collisions

- ➤ Prompt charged particle production in 5 TeV *p*Pb collisions
- ➤ High precision at very small Bjorken-*x*
- ➤ Forward flow with identified hadrons possible

- First π^0 result in forward rapidity at LHC.
- \triangleright Gateway to direct photon measurement at small x

LHCb

Direct photon-hadron correlation analysis near completion
Direct photon v_2 in pPb in near future?

Flow analyses at LHCb

- Published result:
 - Charged hadron long-range correlations in 5 TeV pPb collisions
- Current flow analyses:
 - Charged hadron v_n in PbPb collisions at 5 TeV
 - Charged hadron v_n in pPb collisions at 8.16 TeV
 - Prompt D^0 meson v_n in pPb collisions at 8.16 TeV
- Planning:
 - Upsilon v_2 in 13TeV pp collisions
 - Charged hadron v_n in SMOG (p-Gas and Pb-Gas)

Charged hadron long-range correlations in pPb collisions

PHYS. LETT. B762 (2016) 473

- LHCb di-hadron correlations in 5 TeV pPb collisions
 - 2-particle angular correlation method
 - First time in the forward region
- Correlation function constructed from

$$\frac{1}{N_{trig}} \frac{d^2 N_{pairs}}{d\Delta \phi d\Delta \eta} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

$$S(\Delta \eta, \Delta \phi) = \frac{1}{N_{trig}} \frac{dN_{pairs}^{same}}{d\Delta \phi}$$

Pairs from the same events

$$B(\Delta \eta, \Delta \phi) = \frac{1}{N_{pairs}(\Delta \phi = 0)} \frac{dN_{pairs}^{mixed}}{d\Delta \phi}$$

Pairs from mixed events

• Observation of near side ridge in high activity events

Charged hadron long-range correlations in pPb collisions

Low activity

- Integrate over $2 < |\Delta \eta| < 2.8$
- Near-side ridge is most pronounced in $1 < p_T < 2 \text{ GeV}/c$
- Near-side ridge in Pbp is larger in pPb
- Near-side correlation shows a consistent increase with increasing event activity
- Ongoing analyses with dihadron correlations:
 - Charged hadron v_n in PbPb collisions at 5 TeV
 - Charged hadron v_n in pPb collisions at 8.16 TeV

Open heavy flavor in pPb collisions

An open question

- R_{pPb} measured in midrapidity consistent with 1
- Significant v_2

Prompt D^0 production in pPb collisions at 8.16TeV

arXiv:2205.03936, submitted to PRL

- Room for additional suppression effects in
 - Very low p_T at forward rapidity
 - High $p_{\rm T}$ in the backward rapidity

Open heavy flavor flow in pPb

Prompt D^0 mesons in pPb collisions at 8.16TeV

- \bullet $D^0 \to K^-\pi^+$
- Use impact parameter to separate the prompt and *b*-decay components
- Clean prompt D^0 signals
- High statistics
- $0 < p_{\rm T} < 30 \,{\rm GeV}/c$
- *p*Pb: 1.5 < y < 4.0; Pbp: -5.0 < y < -2.5

LHCb

$\Upsilon(nS)$ in 13 TeV pp collisions

CMS Preliminary pPb 186 nb⁻¹ (8.16 TeV)

• Y (1S), pPb 8.16 TeV (70 \leq N_{trk} < 300)

Fixed-target at LHCb: SMOG

Fixed target mode

- SMOG: System for Measuring Overlap with Gas
- A noble gas (He, Ne, Ar) at $\sim 2 \times 10^{-7}$ mbar pressure injected into the LHC vacuum around the LHCb interaction region
- Originally used to determine luminosity, since 2015 started to collect fixed-target collision data

- $\sqrt{s_{\rm NN}} = 69-110$ GeV between SPS & RHIC
- $-3.0 < y^* < 0$
- Access nPDF anti-shadowing region

SMOG datasets

Study flow with different system sizes: what happens between *pp* and *p*Pb, *p*Pb and PbPb?

Centrality determined by energy in ECal

SMOG2

- SMOG2: Storage Cell for the gas upstream of the nominal IP (z in [-500, -300] mm) and precisely calibrated Gas Feed System.
 - Gas density increased by up to two orders of magnitude ==> much higher luminosity
 - More gas targets: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- beam-beam and beam-gas separate luminous regions:
 - ==> simultaneous *pp*-SMOG2 data-taking
 - ==> large statistics

No centrality limitation!

LHCb-TDR-020

SMOG2

Statistics in 1 year data-taking

simultaneous pp-SMOG2 data-taking

No centrality limitation!

SMOG2 pAr @ 115 GeV

Int. Lumi.	80/pb		
Sys.error	of J/Ψ	xsection	~3%
J/Ψ	yield		28 M
D^0	yield		280 M
Λ_c	yield		2.8 M
Ψ'	yield		280 k
$\Upsilon(1S)$	yield		24 k
$DY \mu^+\mu^-$	yield		24 k

- Measure flow system size dependence with precision
- Measurements of heavy flavor possible

Conclusion

Thanks for your attention

- Ongoing/upcoming flow analyses with LHC Run2 data:
- Charged hadron in 5 TeV PbPb collisions:
 - In the forward rapidity region
 - In 60-90% centrality
- Charged hadron in 8.16 TeV *p*Pb collisions:
 - High statistics
- Heavy flavor in pp and pPb collisions:
 - D mesons in 8.16 TeV pPb collisions
 - Quarkonia in pp collisions
- SMOG
- Other upcoming correlation analyses with LHC Run2 data:
 - Bose-Einstein correlations in 5 TeV *p*Pb collisions
 - Direct photon-hadron correlations in 8.16 TeV pPb collisions
 - •

- After upgrade in Run3:
- Up to 30% in PbPb collisions
- System size study with SMOG2 data
 - High statistics
 - With heavy flavor

backup

LHCb phase-I upgrade

Upgrade I - VELO incident

Damage of the RF box between VELO and Primary Vacuum 10/1/23

RF foils imaged in 2022

- multiple equipment failures resulted in a build up of pressure beyond specification between VELO and beam volumes
- RF foils have been deformed. VELO modules do not show damage
- Foil to be replaced in shutdown, current or year end
- Physics programme significantly affected in 2023

ATLAS PhysRevC.104.014903

