Heavy quark transport and energy loss

S. Plumari

Dipartimento di Fisica e Astronomia 'E. Majorana', Università degli Studi di Catania

INFN-LNS

Thanks to: V. Minissale, M.L. Sambataro, M. Ruggieri, Y. Sun, L. Oliva, S. K. Das, V. Greco

QCD challenges from pp to AA collisions Feb 13 – 17, 2023 Padova, Italy

Outline

Mathematical Explanation Heavy Flavor dynamical evolution in QGP:

- Direct access to transport coefficient (p \rightarrow 0) [R_{AA} and v₂] \rightarrow D_s(T)
- system size scan
- Some recent development and exploration
- Heavy Flavor as a probe of initial stage:
 - first studies of the impact of **Glasma** dynamics
 - probe of vorticity and e.m field: v_1 of D meson and lepton from Z^0

Heavy quarks in uRHIC

10

0 0.5

- strong vorticity
- strong e.m. field
- glasma phase

Initial production

- pQCD-NLO
- MC-NLO, POHWEG
- CNM effect[pp,pA exp.]

$$\sigma_{pp\to c\bar{c}} = \int_{0}^{1} dx_1 dx_2 \sum_{i,j} f_i(x_1, Q^2) f_j(x_2, Q^2) \sigma_{ij\to c\bar{c}}(x_1, x_2, Q^2),$$

Dynamics in QGP

- Transport approaches:
 Boltzmann/Fokker-Planck
- Themalization

τ [fm/c]

- Transp. Coeff. of QCD matter D_s(T)
- Jet Quenching

Hadronization

D, D_s, B, B_s

 Λ_c , Λ_b ...

- SHM/coalescence and/or fragm. D, D_s, B, B_s, Λ_c , Λ_b , Ξ_c , Ω_c ...
- Λ_c/D in pp,pA,AA
- R_{AA}, collective flow harmonics

Transport approaches

Two main approaches:

1) Fokker-Planck (T<<m_a soft scattering)

[TAMU, Duke, Nantes, Torino, Catania, ...]

$$\frac{\partial}{\partial t} f_Q = y \frac{\partial}{\partial p_i} [p_i f_Q] + D_p \nabla_p^2 [f_Q]$$
 Background: Hydro/transport expanding bulk

Drag coeff. entum diffusion coeff. (thermalization rate)

- Fluctuation dissipation theorem $D_p = ET \gamma$
- Spatial diffusion coefficient $D_s = \frac{T}{M\gamma} = \frac{T^2}{D_p} = \frac{T}{M} \tau_{th}$ $\langle \chi^2 \rangle \langle \chi \rangle^2 = 6 D_s t$ a measure of thermalization time

D_s from IQCD

2) Boltzman kinetic transport

(...Kadanoff-Baym-PHSD)

[Catania, Nantes, Frankfurt, LBL,...]

$$p^{\mu}\partial_{\mu}f_{Q}(x,p)=C[f_{q},f_{g},f_{Q}]$$

$$\begin{split} &C[f_q, f_g, f_Q] = \frac{1}{2E_1} \int \frac{d^3 p_2}{2E_2(2\pi)^3} \int \frac{d^3 p_1'}{2E_1'(2\pi)^3} \\ &\times [f_Q(p_1')f_{q,g}(p_2') - f_Q(p_1)f_{q,g}(p_2)] \\ &\times |M_{(q,g) \to Q}(p_1 p_2 \to p_1' p_2')| \\ &\times (2\pi)^4 \delta^4(p_1 + p_2 - p_1' - p_2') \end{split}$$

Transport coefficient

Models not really tested at $p\to 0$ The new data \to determine $D_s(T)$ more properly, i.e. $p\to 0$ where it is defined and computed in IQCD

	Catania	Duke	${\rm Frankfurt}({\rm PHSD})$	LBL	Nantes	TAMU
Initial HQ (p)	FONLL	FONLL	pQCD	pQCD	FONLL	
Initial HQ (x)	binary coll.	binaryy coll.	binary coll.	binary coll.		binary coll.
Initial QGP	Glauber	Trento	Lund		EPOS	
QGP	Boltzm.	Vishnu	Boltzm.	Vishnu	EPOS	2d ideal hydro
partons	mass	m=0	m(T)	m=0	m=0	m=0
formation time QGP	$0.3~\mathrm{fm/c}$	$0.6~\mathrm{fm/c}$	0.6 fm/c (early coll.)	$0.6~\mathrm{fm/c}$	$0.3~\mathrm{fm/c}$	$0.4~\mathrm{fm/c}$
interactions in between	HQ-glasma	no	HQ-preformed plasma	no		no

2018-2019 Several Collab. in joint activities:

- EMMI-RRTF:
 - R. Rapp et al., Nucl. Phys. A 979 (2018)
- HQ-JETS:
 - S. Cao et al., Phys. Rev. C 99 (2019)
- Y. Xu et al., Phys. Rev. C 99 (2019)

Transport coefficient

X. Dong & VG, Progr. Part. Nucl. Phys. (2019)

Reviews:

- F. Prino and R. Rapp, JPG(2019)
- X. Dong and VG, Prog. Part. Nucl. Phys. (2019)
- X. Dong, Y.J. Lee and R. Rapp, Ann.Rev.Nucl.Part.Sci. 69 (2019)
- Jiaxing Zhao et al., Prog. Part. Nucl. Phys. 114 (2020)

Main Differences in models:

- impact of bulk evolution
- impact of hadronization
- momentum depedence of diffusion
- not all models describe data with the same quality $[\chi^2]$ and/or Bayesan analysis]

Future:

- Access low p & precision data (detector upgrade)
- Better insight into hadronization (Λ_c ...)
- New observables: Extend to e-b-e: v_n , ESE q_2 selection & v_n (soft)- v_n (HQ) correlations + v_1 (y)

 D-D triggered angular correlations
- Predictions & measurements for B mesons

QPM extended – momentum dependence

Dyson-Schwinger studies in the vacuum \rightarrow following the model developed by PHSD group

$$\begin{split} M_g(T,\mu_q,p) &= \left(\frac{3}{2}\right) \left(\frac{g^2(T^{\star}/T_c(\mu_q))}{6} \left[\left(N_c + \frac{1}{2}N_f\right)T^2 + \frac{N_c}{2}\sum\frac{\mu_q^2}{\pi^2}\right] \left(\frac{1}{1 + \Lambda_g(T_c(\mu_q)/T^{\star})p^2}\right]\right)^{1/2} + m_{\chi g} \\ M_{q,\bar{q}}(T,\mu_q,p) &= \left(\frac{N_c^2 - 1}{8N_c}g^2(T^{\star}/T_c(\mu_q))\left[T^2 + \frac{\mu_q^2}{\pi^2}\right] \left(\frac{1}{1 + \Lambda_q(T_c(\mu_q)/T^{\star})p^2}\right)^{1/2} + m_{\chi q} \end{split}$$

Momentum dependent factors

QPM extended – momentum dependence

Dyson-Schwinger studies in the vacuum \rightarrow following the model developed by PHSD group

H. Berrehrah, W. et al., Phys.Rev.C 93, 044914 (2016).

C. S. Fischer, J. Phys. G 32, R253 (2006).

$$\begin{split} M_g(T,\mu_q,p) &= \left(\frac{3}{2}\right) \left(\frac{g^2(T^\star/T_c(\mu_q))}{6} \left[\left(N_c + \frac{1}{2}N_f\right)T^2 + \frac{N_c}{2}\sum\frac{\mu_q^2}{\pi^2}\right] \left[\frac{1}{1 + \Lambda_g(T_c(\mu_q)/T^\star)p^2}\right]\right)^{1/2} + m_{\chi g} \\ M_{q,\bar{q}}(T,\mu_q,p) &= \left(\frac{N_c^2 - 1}{8N_c}g^2(T^\star/T_c(\mu_q))\left[T^2 + \frac{\mu_q^2}{\pi^2}\right] \left[\frac{1}{1 + \Lambda_q(T_c(\mu_q)/T^\star)p^2}\right)^{1/2} + m_{\chi q} \end{split}$$

Momentum dependent factors

We correctly reproduce both **EoS** and **quark susceptibilities** which are understimated in the standard QPM approach.

Drag and D_s in QPM extended

Drag coefficient → standard QPM standard QPM including charm extended QPM

- **Increase** at low T consistent with the large enhancement of the coupling in the same T region
- Decrease at high T

Spatial diffusion coefficient D_s

 $T/T_c < 2
ightarrow$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_S reaches the pQCD limit quickly than the standard QPM.

Preliminary:

Nuclear modification factor R_{AA}

$$R_{AA} = f_C(p, t_f) / f_C(p, t_0)$$

Initial momentum distribuction function

→ FONLL for charm quark

Momentum dependent QPM approach

- Better description of recent IQCD data.
- Effects on the global χ^2 coming from the comparison to the experimental data of R_{AA} , v_n ?

Transport coefficient

Different hadronization models can affect the extraction of the charm quark diffusion coefficient

Several Collab. in joint activities:

- R. Rapp et al., Nucl. Phys. A 979 (2018)
- HQ-JETS:
 - S. Cao et al., Phys. Rev. C 99 (2019)
- Y. Xu et al., Phys. Rev. C 99 (2019)

-Non-equilibrium in initial stage and bulk dynamics

- anisotropic bulk distribution in initial stage P_L/P_T
- non-equilibrium energy/density ratio [fugacity,corona]
- shift in pole parton masses in the bulk

First study may be even more relevant to pA

[T. Song, P. Moreau, J. Aichelin, E. Bratkovskaya, PRC 101 (2020)]

At low T and low p viscous corrections on the drag coefficients are larger for the radiative process in comparison with collisional process

ESE: v2 and spectra

S. Plumari et al., Phys.Lett.B 805 (2020) [Prado, JNH et al., PRC 96(2017)

q_2 selected $v_2(p_T)$

M.L. Sambataro et al., Eur. Phys. J. C 82 (2022) 9, 833

Data taken from ALICE coll.: Phys. Lett. B 813 (2021) 136054

 $\triangleright v_2$ (large- q_2 /small- q_2) $\geq v_2$ (unbiased) of about 50% in both 0-10% and 30-50% central

What changes from c to b?

Prediction for B meson, electrons from semi-leptonic B meson decay within a coal.+ fragm. model R_{AA} and v_2 data suggest a strong coupling of b quarks with bulk matter

What changes from c to b?

$$T/T$$

$$2\pi T D_s(T) = \frac{2\pi T^2}{M_{HO}A(T,p\to 0)} = \frac{2\pi T^2}{M_{HO}} \tau_{th}$$

In QPM approach $\rightarrow D_s(c)$ is 30-40% larger than $D_s(b)$ $M \rightarrow \infty$ limit is not reached for charm

System size scan

Allows a focus only on system size effects.

- In mid-central collisions clear suppression of v_2 in small systems \rightarrow role played by the system size.
- In central collisions v_2 constant across the system size scan. Decrease of system size compensated by increase of ϵ_2 .
- due to larger masses of b quarks, B meson RAA are larger than D meson.
- larger than D meson.

 For B mesons, jet quenching effect on RAA is still sizable in central O+O collisions.

Yu-Fei Liu et al., PRC 105 (2022) 4, 044904

Impact of Glasma on HQ

Impact of Initial Stage

- ! Impact of Glasma phase?!
- Huge vorticity
- Strong e.m. field

Initial Glasma in non-equilibrium can induce strong diffusion

- S. Mrowczynski, EPJA 54 (2018)
- M.Ruggieri and S.K. Das, PRD98 (2018)

Static box- SU(2) 20 Strong diffusion No drag t=0.5 fm/c No drag t=1 fm/c T=1 fm/c

Solving classical Yang-Mills

$$\frac{dA_i^a(x)}{dt} = E_i^a(x),$$

$$\frac{dE_i^a(x)}{dt} = \sum_j \partial_j F_{ji}^a(x) + \sum_{b,c,j} f^{abc} A_j^b(x) F_{ji}^c(x),$$

Heavy quark in the chromo magnetic field

$$\frac{dx_i}{dt} = \frac{p_i}{E},
E \frac{dp_i}{dt} = Q_a F_{i\nu}^a p^{\nu},
E \frac{dQ_a}{dt} = -Q_c \varepsilon^{cba} A_b \cdot p,$$

Strong and fast diffusion, see also in K. Boguslavski et al., arXiv:2005.02418 with correlator approach

Impact of Glasma on HQ

Charm in the Glasma and Langevin starting at t_{form} =0.08 fm/c Same underlying bulk energy density (central PbPb@5.02ATeV) LV: Drag & Diffusion tuned to R_{AA}

D. Avramescu QM2022

- \triangleright Large initial broadening rate of Glasma at p_T < 5 GeV at τ≥0.3 fm/c LV (HQ scattering in QGP) becomes dominant
- Issue the transition from Glasma to QGP

❖ To quantify the phenomenological impact start from FONNL and compare HQ Wong's in Glasma bulk vs LV in hydro bulk starting at τ_{form} =1/2m_Q and/or τ_{0} =0.3-0.6 fm/c

Impact of Glasma on HQ

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, arXiv:2005.02418

Correlator method

$$\langle \dot{p}_i(t)\dot{p}_i(t')\rangle = \frac{g^2}{2N_c}\langle E_i^a(t)E_i^a(t')\rangle \qquad 3\kappa(t,\Delta t) \equiv \frac{\mathrm{d}}{\mathrm{d}\Delta t}\langle p^2(t,\Delta t)\rangle$$

Link pA <-> AA

Using HQ as a probe of the Glasma

-> May have key role for

D-D angular correlation

May affect the determination of Ds(T)

modify (improve) the relation R_{AA} & v₂

Impact on AA collisions observables (interacting at $\tau = \tau_{form}$)

- Dominance of diffusion-like enhancement of R_{AA}(p_T)
- ❖ Gain in v₂: larger interaction in QGP stage to have same R_{AA}(p_T)

Y. Sun et al., PLB 798 (2019)

Electro-Magnetic field in HIC

Start from point-like *Lienhard-Wiechart* retarded potentials (Biot-Savart law)

$$e\mathbf{B}(t,\mathbf{r}) = \alpha_{\text{em}} \sum_{a} \frac{\left(1 - v_{a}^{2}\right) \left(\mathbf{v}_{a} \times \mathbf{R}_{a}\right)}{R_{a}^{3} \left[1 - \left(\mathbf{R}_{a} \times \mathbf{v}_{a}\right)^{2} / R_{a}^{2}\right]^{3/2}},$$

$$\left(\nabla^{2} - \partial_{t}^{2} - \sigma_{el} \partial_{t}\right) \mathbf{B} = -\nabla \times \mathbf{J}_{ext},$$

$$\left(\nabla^{2} - \partial_{t}^{2} - \sigma_{el} \partial_{t}\right) \mathbf{E} = -\nabla \rho_{ext} + \partial_{t} \mathbf{J}_{ext},$$

<u>Fold them</u> with the nuclear transverse density profile of the spectator nuclei and sum forward (+) and backward (-)

$$eB_{y,s} = -Z \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi' \int_{x_{\text{in}}(\phi')}^{x_{\text{out}}(\phi')} dx'_{\perp} x'_{\perp} \rho_{-}(x'_{\perp})$$

$$\times (eB_{y}^{+}(\tau, \eta, x_{\perp}, \phi) + eB_{y}^{-}(\tau, \eta, x_{\perp}, \phi)),$$

$$eE_{x}^{+}(\tau, \eta, x_{\perp}, \phi) = eB_{y}^{+}(\tau, \eta, x_{\perp}, \phi) \coth(Y_{b} - \eta)$$

Gursoy, Kharzeev, Rajagopal, PRC89(2014) like in:

K. Tuchin, PRC 88, 024911 (2013).

K. Tuchin, Adv. High Energy Phys. 2013, 1 (2013).

Assumptions:

- Medium at t<0
- Electric Conductivity const. in T
- No back reactions in the bulk due to currents

J_{Faraday}

- No e-b-e fluctuations
- Neglected finite size of colliding nuclei

Electro-Magnetic field in HIC

S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V.

For charm quark we find a sizeable v₁

 \approx O(10⁻²) \approx 10-50 times larger than $\pi^+/\pi^-!$

Using the same E-B field evolution in U. Gursoy et al, PRC(2014)

Huge v₁ about **30 times larger** than the kaon one

Excellent qualitative prediction of

Chatherjee and Bozek, PRL 120 (2018)

 $dv_1/dy \approx 0.02-0.04$ ($\approx 10-15$ times larger than light-charged)

Very surprising that v_1 heavy quark >> v_1 light quarks

v₁ of D mesons: quantitative study

$$W(x_{\perp}, \eta_s) = 2 (N_A(x_{\perp}) f_{-}(\eta_s) + N_B(x_{\perp}) f_{+}(\eta_s))$$

$$f_{+}(\eta_{s}) = f_{-}(-\eta_{s}) = \begin{cases} 0 & \eta_{s} < -\eta_{m} \\ \frac{\eta_{s} + \eta_{m}}{2\eta_{m}} & -\eta_{m} \leq \eta_{s} \leq \eta_{m} \\ 1 & \eta_{s} > \eta_{m} \end{cases}$$

charm -2 -4 t = 0.2 fm/cAu+Au @ RHIC 200 GeV QGP, tilted QGP, tilted charm. NOT tilted charm, tilted -2 0 x [fm] 2 0 : x [fm]

P. Bozek and I. Wyskiel, PRC 81(2010) 054902

Δv_1 from e.m. field?

≈ 10 times larger than charged, similar to S. Das et al., PLB768 (2017) but could be also consistent with 0!

 v_1 expected to be more sensitive than v_2 to high T (early time) $D_s(T)$!

Unexplored...

Δv_1 from e.m. field?

≈ 10 times larger than charged, similar to S. Das et al., PLB768 (2017) But could be also consistent with 0!

 $d(\Delta v_1)/dy$ for D⁰ 50 times larger RHIC $d(\Delta v_1)/dy \approx 10^{-4}$ for charged particles

Opposite sign & magnitude \approx 40 times larger than model predictions Δv_1 (RHIC) $\approx \Delta v_1$ (LHC) What's going on?

V1 HEAVY FLAVOUR

-80

εη [GeV/fm³]

The heavy quark dynamics is described using a modified Langevin

- Thermal diffusion of heavy quarks inside the QGP
- Medium-induced gluon emission
- Lorentz force due to the electromagnetic field.

$$\frac{d\vec{p}}{dt} = -\eta_{\rm D}(\vec{p})\vec{p} + \vec{\xi} + \vec{f}_g + q(\vec{E} + \vec{v} \times \vec{B})^{-5}$$

QGP evolution simulated with the (3+1)-D viscous hydrodynamic including the tilted geometry of the initial energy density distribution with respect to the longitudinal direction

Ze-Fang Jiang et al., *Phys.Rev.C* 105 (2022) 5, 054907

B meson v1 splitting smaller than D meson v1 splitting which results from the smaller electric charge

Conclusions

- **Estimate of D_s(T) [non –perturbative] from R_{AA} & v₂ successful:**
 - v₁ should be added to efforts for D_s(T): more sensitive to high (initial) T
 - Glasma impact: link pA and AA
- riangle Charm ΔV_1 can allow to access the initial strong E-B field and vorticity:
 - * splitting in $\Delta v_1(l^+, l^-)$ from Z⁰ decay can clarify the e.m. origin of $\Delta v_1(D^0 \overline{D}^0)$ @LHC
 - * Bottom can supply info on the evolution of B_v(t) at earlier t≈0.03fm/c