

The LHCf experiment: Results and prospects for CRs physics

Eugenio Berti, on behalf of the LHCf collaboration QCD Challenges from *pp* to *AA* collisions *February 13 – 17, 2023 Padova, Italy*

Ultra High Energy Cosmic Rays

Motivation

Understand mechanisms responsible for acceleration and propagation

Accurate measurements of UHECR flux and composition as a function of the energy

D'Enterria et al., 2011

Extensive Air Showers

Hadronic interaction models

The LHCf Experiment

The LHCf detectors

Arm1 Arm2

Tower Size:

20 x 20 and 40 x 40 mm²

Imaging layers:

4 x-y 1mm GSO bars

Position resolution:

- < 200 µm (photons)
- < 1 mm (hadrons)

Two sampling calorimeters

Two towers: 22 tungsten

and 16 GSO scintillators layers

Depth: 21 cm, 44 X_0 , 1.6 λ_1

Energy resolution:

- < 2% (photons)
- ~ 40% (hadrons)

Tower Size:

 $^{\prime}$ 25 x 25 and 32 x 32 mm 2

Imaging layers:

4 x-y 160µm Si microstrip

Position resolution:

- < 40 µm (photons)
- < 800 µm (hadrons)

The LHCf acceptance

Publication table

	У	neutron	$\pi^{_0}$	η ⁰
Detector Calibration	NIM A, 671, 129 (2012) JINST 12 P03023 (2017)	JINST 9 P03016 (2014)		
p+p 510 GeV (RHICf)	submitted to PLB		Phys. Rev. Lett. 124, 252501 (2021)	
p+p 900 GeV	Phys. Lett. B 715, 298 (2012)			
p+p 7 TeV	Phys. Lett. B 703, 128 (2011)	Phys. Lett. B 750 (2015) 360-366	Phys. Rev. D 86, 092001 (2012) Phys. Rev. D 94 032007 (2016)	
p+p 2.76 TeV			Phys. Rev. C 89, 065209 (2014)	
p+Pb 5.02TeV	Focus o	f this presentation	Phys. Rev. D 94 032007 (2016)	
p+p 13 TeV	PLB 780 (2018) 233-239	JHEP 11 (2018) 073 JHEP 07 (2020) 16	Analysis ongoing	Almost completed
p+Pb 8.1TeV	Analysis ongoing			

Neutron Production Cross Section

p-p √s = 13 TeV

In $\eta > 10.75$ no model agrees with peak structure and production rate, whereas in the other regions, SIBYLL 2.3 and EPOS-LHC have better but not satisfactorily agreement with the experimental measurements.

Neutron EnergyFlow & Inelasticity

p-p √s = 13 TeV

Test of Feynman scaling

using forward photons

First confirmation of **Feynman scaling** using zero-degree photons but no sensitivity to small x_F dependency as in some models.

π^o Production Cross Section

 $p-p \sqrt{s} = 7 \text{ TeV}$

...almost completed

 $M_{\gamma\gamma}$ [MeV]

Background Signal+background

η^o Production Cross Section

p-p √s = 13 TeV

0.9

Among the large model variations, only **QGSJETII-04** has good but not satisfactorily agreement with the experimental measurements.

p-p √s = 13 TeV

The LHCf-ATLAS common operations leads to a much higher degree of information on the processes responsible for forward production, allowing for accurate measurements relative to:

- Diffractive/Non-Diffractive production
 - Multi-parton interaction
 - One-pion exchange

. . . .

Diffractive events can be distinguished from non-diffractive events by **ATLAS veto**: Tracks=0 at $|\eta|$ <2.5

LHCf in Run III: p-p √s = 13.6 TeV

Operations on September 24-26, 2022

Main Motivation

Thanks to the silicon DAQ upgrade and optimization of trigger scheme, significantly enlarge the <u>double-y event statistics</u> for more precise measurements of the production of π^0 , η^0 and (possibly) K^0_S

September 24-26: - Fill 8178 - 55h Fill 8179 - 2h

8 times larger statistics with respect to Run II

Much larger increase for the double y events

For each detector position $\mathbf{L}_{\mathsf{int}} \sim \mathbf{40} \; \mathbf{nb}^{-1}$

We expect a few thousands of η^0 events and a few hundreds of K^0 s events

LHCf in Run III: p-O and O-O

Foreseen in 2024

Main Motivation

Both p-p and p-Pb collisions are not representative of the first interaction of a UHECR (which is a light nucleus) with an atmospheric nucleus (mainly N or O), hence the importance of p-O and O-O operations to avoid large extrapolation

In addition, the main uncertainty in forward production from p-Pb collisions is due to contribution from Ultra-Peripheral Collisions (UPC background), which is irrelevant in the EAS case

Run III is the last opportunity for LHCf!

A week of p-O and O-O operations foreseen for 2024

Summary

The LHCf experiment highlighted *significant deviations* in forward production with respect to the current model expectations.

The data acquired in $p-p \sqrt{s} = 13.6 \text{ TeV}$ will improve our knowledge:

- High precision measurement on forward π^0 and η^0 production
- First event measurement of K^0_s production in the forward region
 - Insight into different production mechanisms (LHCf-ATLAS)

Of fundamental importance for CR are **p-O and O-O runs** in 2024 and Run III is the last chance for LHCf experiment to take this data!

Thank you for the attention!

Photons dσ/dE

p-p √s = 13 TeV

QGSJET II-04 is in good agreement for $\eta>10.94$, otherwise softer **EPOS-LHC** is in good agreement below 3-5 TeV, otherwise harder

π^o Production Cross Section

 $p-p \sqrt{s} = 13 \text{ TeV}$

Good agreement between Arm1 and Arm2 data and between "Type-I" and "Type-II" events

Test of Feynman scaling

using π^0

Diffractive and non-diffractive production

22

Additional motivations for Run III:

Operations with ATLAS ZDC

Additional motivations for Run III:

Operations with ATLAS AFP

Identification of **single diffractive events** + possible measurements of:

- Δ resonance (p+p \rightarrow p+ Δ \rightarrow p+p+ π ⁰)
 - Bremsstrahlung (p+p → p+p+y)

Upgrade for Run III operations: Upgrade of the silicon microstrip DAQ

Upgrade for Run III operations:

Optimization of the trigger scheme

p-p \sqrt{s} = 13.6 TeV:

Hadron-like candidate in Small Tower

p-p √s = 13.6 TeV: Type-I candidate

$p-p \sqrt{s} = 13.6 \text{ TeV}$: Type-II candidate in Small Tower

p-O and O-O operations:

Collision conditions

2022 conditions for **p-p** @ **13.6 TeV**:

- $N_{bunch} = 144/500$
- $\Delta t_{\text{bunch}} = 525 \text{ ns}$
- $L < 10^{30} \text{ cm}^{-2}\text{s}^{-1}$
- $\theta_{crossing} = 290 \mu rad$
 - $\mu = 0.01-0.02$
 - $\beta^* = 19.2 \text{ m}$

For each detector position $L_{int} \sim 40 \text{ nb}^{-1}$

Ideal conditions for

p-O @ 9.9 TeV

- $N_{bunch} = 24/43$
- $\Delta t_{bunch} = 2 \mu s$
- $L < 10^{29} \text{ cm}^{-2}\text{s}^{-1}$
- $\theta_{crossing} = 290 \mu rad$
 - $\mu = 0.01-0.02$
 - $\beta^* = 10 \text{ m}$

(Expected)

L_{int}~1.4 nb⁻¹ for p-O L_{int}~0.7 nb⁻¹ for O-O

Higher collisions energy increases the LHCf detector acceptance

p-O and O-O operations:

Main experimental challenge

LHCf can safely operate on proton-remnant side since it can separately reconstruct two particles in same tower and less than 10% of events have more than a particle

Due to high multiplicity, <u>LHCf</u> can operate on oxygen remnant side only 15 mm higher (η<11)

Preliminary result for photons in p-p $\sqrt{s} = 13$ TeV

After a preliminary test in 2013, in 2015 and 2016 LHCf and ATLAS experiments had **common operation**.

Diffractive events can be distinguished from non-diffractive events by **ATLAS veto** : tracks=0 at $|\eta|$ <2.5

On-going analysis

Study of mechanism of multiparton interaction using neutron events in LHCf as proposed by S. Ostapchenko et al., Phys. Rev. D 94, 114026

cascade modeled

as universal state

Foreseen analysis with Run III data

GOAL: Increase the statistics for LHCf-ATLAS common analyses

GOAL: Identification of single diffractive events + measurements of:

- \triangle resonance (p+p \rightarrow p+ \triangle \rightarrow p+p+ π ⁰)
 - Bremsstrahlung (p+p → p+p+y)

Operation with **ALFA+AFP roman pots**

GOAL: Indirect measurement of p- π cross section via the contribution from one-pion exchange (OPE) with better hadron energy resolution

Operation with ZDC ($\sigma_E/E = 40\% \rightarrow 20\%$)

10 6 using MC true information

ATLAS LHCf

N_{charged} > 60 r < 6 mm $|\eta| < 2.5 |\eta| > 10.75$ MonChER v1.0

POSLHC

