

Hadronization of light and heavy flavour across collision systems

Hadronisation

Hadronisation: the mechanism by which quarks and gluons produced in hard partonic scattering processes form the hadrons

> No first-principle description of hadron formation

- Non-perturbative problem, not calculable with QCD
- Necessary to resort to models and make use of phenomenological parameters
- Hadronisation of the QGP medium at the pseudo-critical temperature
 - Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter

> Hadronization from a QGP: is it different from other cases in which no bulk of thermalized partons is formed?

Independent fragmentation

- > Inclusive hadron production from hard-scattering processes (large Q^2):
 - Factorization of: PDFs, partonic cross section (pQCD), fragmentation function

$$\sigma_{pp \to hx} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to h}(z, Q^2)$$

▶ **Fragmentation functions** $D_{q} \rightarrow h(z, Q^{2})$:

- Phenomenological functions to parameterize the non-perturbative parton-to-hadron transition
- *z* is the fraction of the parton momentum taken by the hadron h
- Parameterized on data (e⁺e⁻) and assumed to be "universal"

- In event generators: final stage of the parton shower interfaced to non-perturbative hadronisation models
 - (a) String fragmentation (e.g. Lund model in PYTHIA)
 - (b) Cluster decay in HERWIG

(a) String hadronization

(b) Cluster hadronization

The smallest system - e⁺e⁻

Leading particle effect

$$A(x_F) = \frac{\left(\frac{d\sigma}{dx_F}\right)^{D^-} - \left(\frac{d\sigma}{dx_F}\right)^{D^+}}{\left(\frac{d\sigma}{dx_F}\right)^{D^-} + \left(\frac{d\sigma}{dx_F}\right)^{D^+}}$$

- Measurements of charm production in pion-nucleon collisions
- At large x_F: favoured the production of hadrons sharing valence quarks with beam hadrons
 - D^- meson shares the d quark with the π^- projectile \rightarrow favored over D^+
- Break-up of independent fragmentation

> A reservoir of particles leads to significant changes in hadronisation

Color reconnection

PRD 105 (2022) 1, L011103

- Baryon production and baryon/meson ratios:
 - Underestimated by PYTHIA tuned on e⁺e⁻ (old CR model, Monash 2013)
 - Better description with Color Reconnection beyond leading color (New CR model, CR mode 0,2,3)

Independent fragmentation picture not valid in color-rich environment

Fragmentation universality?

- Evidence of for different fragmentation fractions in pp collisions at LHC and e+e- (ep) collisions at lower √s
 - Indication that parton-to-hadron fragmentation depends on the collision system
 - Assumption of their universality not supported by the measured cross sections

 \rightarrow Independent fragmentation picture not valid in partonic-color-rich environment \rightarrow Break-down of universality of fragmentation functions

Baryon/meson ratio in pp

- CR Modes BLC in PYTHIA 8, SHM+RQM, Catania (and QCM) enhance the baryon yield and better describe the data
- Do the model also describe measurements at forward rapidity?
 - Is there any obvious difference (parton density, charm density)?

PYTHIA: JHEP 1508 (2015) 003 SHM+RQM: PLB 795 117-121 (2019) Catania: PLB 821 (2021) 136622 QCM: EPJC 78 no. 4, (2018) 344

Similarities or accidentalities

> Note: in ep (DIS) for the LF sector this was apparently already there

- larger values seen already at HERA in strange sector
- in ep baryon-to-meson measurements limited to $p_{T} < 2$ (2.5) GeV/c

A common trend for charm baryons

In the strangeness sector the enhancement is even larger!

- Can we learn something on strangeness from HF measurements? D_s/D⁰ does not significantly varies as a function of multiplicity
- What is the role of di-quark? Can we learn something about them?
- Coalescence is the model that gets consistently closer to data

PYTHIA: JHEP 1508 (2015) 003 SHM+RQM: PLB 795 117-121 (2019) Catania: PLB 821 (2021) 136622 QCM: EPJC 78 no. 4, (2018) 344

Baryon/meson ratio in p-Pb

 Ξ_{c}^{0}

 $\Lambda_{\rm c}^+$

GSĽ

Baryon/meson ratios

- Low / mid p_T(< 8 GeV/c):</p>
 - Ratios $p/\pi(\Lambda/K_s^0)$ enhanced in Pb–Pb compared to pp
 - Interplay of collective flow and recombination
- ➤ High p_T(> 8-10 GeV/c):
 - Ratios compatible with those in pp
 - Independent fragmentation
- > Different model ingredients needed:
 - Radial flow of partons
 - Coalescence + fragmentation
 - Resonance decays

Identified hadron v_2

 Baryon vs meson grouping at intermediate p_T as expected from coalescence

- ► Low p_T (< 2-3 GeV/c): mass ordering</p>
 - As predicted by hydrodynamics
- Mid p_T (3-8 GeV/c): grouping by number of constituent quarks
 - Supports hypothesis of hadron production via quark recombination
- > **High** \boldsymbol{p}_{T} (>10 GeV/*c*): similar v_{2} for π and p
 - Path-length dependent energy loss + independent fragmentation
- Φ meson v₂: test mass ordering and particle type scaling
 - Follows proton v₂ (similar mass) at low p_T and meson v₂ (same number of constituent quarks) at higher p_T

Extremely good description of particle yield in the light flavour sector!

 Measured p_T-integrated yields of open charm mesons and J/Ψ midrapidity described by SHMc within uncertainties

- Charm content determined by cross section and not by fireball temperature
- Assume (full) charm quark thermalisation in the QGP
- Charm quarks distributed to hadrons according to thermal weights

Yield of Λ_c baryons underestimated

Captured assuming an enhanced production of charmed baryons

Modification of p_{T} distributions

Coalescence of heavy quarks with light quarks from the QGP affects HF hadron momentum distributions

- HF hadrons pick-up the radial and elliptic flow of the light quark

Modification of p_{T} distributions

Nuclear modification factor

Elliptic flow

> Coalescence component is crucial to describe the data at low/mid p_{T}

Coalescence of heavy quarks with light quarks from the QGP affects HF hadrochemestry

- Enhanced D_s(B_s) yield relative to non-strange mesons (strange quarks abundant in QGP)
- D_s/D^0 ratios in central Pb-Pb hint at enhancement at mid- p_T relative to pp
- Similar indication observed in the strange-beauty sector (B_s and non-prompt D_s)

Λ_{c} in Pb-Pb

- Λ_c/D^0 in heavy-ion collision is higher at intermediate p_T wrt e⁺e⁻ and pp
 - Higher probability to hadronize via coalescence?
 - Radial flow?
 - An interplay of the two effect?

Λ_{c} in Pb-Pb

- Possible rapidity dependence need further investigation - what do models (coalescence) predict?
- Other baryons with strange component?

- Λ_c/D^0 in heavy-ion collision is higher at intermediate p_T wrt e⁺e⁻ and pp
 - Higher probability to hadronise via coalescence?
 - Radial flow?
 - An interplay of the two effect?

Baryon-to-meson ratio vs multiplicity

- > Baryon/meson ratios in pp collisions: different p_{τ} trend depending on multiplicity
 - Larger baryon production at intermediate p_{T} with increasing multiplicity
- > No modification of p_{T} -integrated Λ_{c}/D^{0} from pp to Pb-Pb
- > Towards very low multiplicity would it be possible to reach the e^+e^- limit?

Andrea Dubla

Multi-charm hadron states

- > Crucial new insight by measuring baryons containing multiple charm quarks $(\Xi_{cc}^{+}, \Xi_{cc}^{+}, \Omega_{cc}^{+}, \Omega_{cc}^{+})$
- Yields of multi-charm/single-charm hadrons predicted to be largely enhanced in A-A compared to pp collisions in SHM and coalescence models - production in single hard scattering disfavored
 - Direct window on hadron formation from QGP and unique testing ground for charm deconfinement and thermalisation

Beauty hadrons in Pb-Pb

Full reconstruction of beauty hadrons will be at reach in Run 3-4

- Expected enhancement in B⁰_s in Pb-Pb collisions will be quantifiable for the first time
- Reconstruction of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$ (BR = 4.9 10-3)
 - Will be affected by large uncertainties and limited to $p_{T} > 4-5$ GeV/c in Run 3 and Run 4

Bottomonia states

 \succ

_

Y described if 30% of beauty quarks

Presence of currently unknown open

Reach partial equilibrium?

assumed to thermalize.

- Y largely overestimated if 100% of beauty quarks assumed to be thermalized.
 - Does beauty quark reach thermal equilibrium
 - v₂ is compatible with zero

A new and challenging QGP probe

- B_c⁺ production in heavy-ion collisions is an ideal probe to be sensitive both to dead cone effect and statistical recombination
 - CMS: used 2018 Pb-Pb data!
 - ALICE, LHCb: aim for Run 3

Another window on coalescence

Slide from Jin Wang

Conclusion

> Light flavour production at intermediate p_{T}

- Transition from thermal (hydro) to kinetic regime -> window on hadronization mechanism?
- Quark coalescence captures many features of the data

Heavy flavours

- Clear signs of coalescence in open charm measurements (and in J/Ψ not shown today)
- Charm-hadron yields vs SHM provide complementary information on charm quark thermalization
- Baryon enhancement present even at low mult. pp can we reach an e⁺e[−] limit in pp?

Outlook:

- > Beauty: need of precise measurements of hadrochemistry, p_{T} spectra and v_{n} for different hadrons
 - Accessible with precision with future large pp and Pb-Pb data samples
- > Multi-charm hadron, B_c , and exotica will 'soon' be at reach (at least in pp collisions)
 - They can open a new window for further testing coalescence and statistical hadronization

Statistical hadronization

Abundances of light and strange hadrons and nuclei:

- Follow equilibrium populations of a hadron-resonance gas in chemical and thermal equilibrium
- Freeze-out temperature $T_{ch} \sim 155 \text{ MeV}$
- > Thermal origin of particle production
 - Macroscopic description of the hadron gas in terms of thermodynamic variables

Statistical hadronisation models (SHM)

- Yields depend on:
 - Hadron masses (and spins)
 - Chemical potentials
 - Temperature and volume of the fireball

Andronic et al, Nature 561 (2018) 7723, 321

Strangeness vs mult

- Particle ratios measured in pp collisions show a smooth evolution with multiplicity from small to large collision systems
- Increasing strangeness relative to pion yield with increasing multiplicity
 - Challenge for pp event generators

Strangeness vs mult in HF

Increasing trend of B_s/B^0 ratios vs. multiplicity in the VELO (same rapidity region of B mesons)

Di-quark – do they play a role?

- \succ Ξ_c / Σ_c described by Monash
 - Does it tells us something?
 - Do diquarks play any role?

Andrea Dubla

Hadrons from parton shower

- On a microscopic level hadronisation of jets modeled with:
 - Perturbative evolution of a parton shower with DGLAP down to a low-virtuality cut-off Q0
 - Final stage of parton shower interfaced to a non perturbative hadronisation model
- String fragmentation (e.g. Lund model in PYTHIA)
 - Strings = colour-flux tubes between q and \overline{q} end-points
 - Gluons represent kinks along the string
 - Strings break via vacuum-tunneling of (di)quark-anti(di)quark pairs

• Cluster decay in HERWIG

- Shower evolved up to a softer scale
- All gluons forced to split into $q\overline{q}$ pairs
- Identify colour-singlet clusters of partons following color flow
- Clusters decay into hadrons according to available phase space

Quark coalescence/recombinaton

- Single parton description may not be valid anymore
- No need to create qq pairs via splitting/string breaking
- Partons that are *"close" to each other in phase space* (position and momentum) can **recombine** into hadrons
- Initially thought to happen only in heavy-ion collisions

Recombination vs. fragmentation:

- Competing mechanisms, dominant in different p_{T} regions
- **Recombination depends on "environment"**, i.e. density and momentum distribution of surrounding (anti)quarks
- Recombination naturally enhances baryon/meson ratios at intermediate p_{τ}

Charm and beauty fragmentation to meson

- Ratio fragmentation fraction (FF) to meson with and w/o strange quark content similar for charm and beauty
- No significant dependence on energy and collision system

In jet and in bulk

- Baryon/meson ratios different in-jet and out-of-jet
 - Baryon enhancement mostly from the bulk
 - Connected to collective expansion and hadronisation of bulk
- > Ratio of Λ /K0in-jet is similar in pp and Pb-Pb
- Fragmentation of the jet not modified by the medium

More differential: low multiplicity

- Enhancement observed for Λ_c/D^0 from low to high multiplicity

The question is low mult vs ee collisions

- Pythia Mode2: Multiplicity trend qualitatively in line with data
- no variation with mult in default PYTHIA8 (Monash)

Λ_{c} in Pb-Pb

Quarkonia

Quarkonia

