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Heavy-particle diffusion: physics motivation

Goal: getting access to the microscopic properties of the background
medium in which the Brownian particle propagates
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Perrin (1909): proving the granular
structure of matter and providing an
estimate of the Avogadro number
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100 years later: getting an estimate of
similar accuracy of some transport
coefficients, like e.g. the momentum
broadening
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A crucial difference

In HF studies in nuclear collisions the nature of the Brownian particle
changes during its propagation through the medium

@ possible thermal mass-shift (here neglected)

@ hadronization (impossible to neglect)
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A crucial difference

In HF studies in nuclear collisions the nature of the Brownian particle
changes during its propagation through the medium

@ possible thermal mass-shift (here neglected)
@ hadronization (impossible to neglect)

e source of systematic uncertainty in extracting transport
coefficients;

e an issue of interest in itself: how quark — hadron transition
changes in the presence of a medium (the topic of this talk)
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HF hadronization: experimental findings
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Strong enhancement of charmed baryon/meson ratio, incompatible with
hadronization models tuned to reproduce ete™ data
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@ pattern similar to light hadrons
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Strong enhancement of charmed baryon/meson ratio, incompatible with
hadronization models tuned to reproduce ete™ data

@ pattern similar to light hadrons

@ baryon enhancement observed also in pp collisions: is a dense
medium formed also there? Breaking of factorization description in
pp collisions

dop# Z fa(x1) fo(x2) @ dFap—scex @Dcp (2)
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA),
clusters (HERWIG), hadrons/resonances (coalescence).
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@ in “elementary collisions”: from the hard process, shower stage,
underlying event and beam remnants;
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA),
clusters (HERWIG), hadrons/resonances (coalescence). Partons taken

@ in “elementary collisions”: from the hard process, shower stage,
underlying event and beam remnants;

@ in heavy-ion collisions: from the hot medium produced in the
collision. NB Involved partons closer in space in this case and this

has deep consequence!
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A warning from nucleosynthesis
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of excited states just above threshold (not a simple N — 1 process);
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);

@ States well know experimentally and predicted by theory calculations

@ Stellar temperature ~ 108 K ~ 10 keV not enough to affect
nucleon/nuclear properties (vacuum spectrum)

None of the above conditions is fully under control in the quark to
hadron transition
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Our new hadronization model

Once a ¢ quarks reaches a fluid cell at Ty = 155 MeV it is recombined with a
light antiquark or diquark, assumed to be thermally distributed (for more
details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

T M? M
n=g 8 272 ke Th
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Once a ¢ quarks reaches a fluid cell at Ty = 155 MeV it is recombined with a
light antiquark or diquark, assumed to be thermally distributed (for more
details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

T M? M
n=g 8 272 ke Th

Extract its thermal three-momentum in the LRF of the fluid;

Boost the thermal particle to the LAB frame and recombine it with the
HQ), constructing the cluster C;

Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron
in that channel (~10% cases) go back to point 1, otherwise go to point 5;

Introduce intermediate cutoff Mmax = 4 GeV (as in HERWIG) and
simulate cluster decay, depending on its invariant mass:

© © o060

o Light clusters (Mc < Mp,.x) undergo isotropic two-body decay
in their own rest frame, as in HERWIG;

o Heavier clusters (M¢ > Max) undergo string fragmentation
into N hadrons, as in PYTHIA.
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Cluster mass distribution
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@ Cluster mass distribution is steeply falling, most clusters are light
and undergo a two-body decay C — h. + 7/~;

@ This arises from Space-Momentum Correlation: charm momentum
usually parallel to fluid velocity — recombination occurs between
quite collinear partons;
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Cluster mass distribution
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@ Cluster mass distribution is steeply falling, most clusters are light
and undergo a two-body decay C — h. + 7/7;

@ This arises from Space-Momentum Correlation: charm momentum
usually parallel to fluid velocity — recombination occurs between
quite collinear partons;

@ Cross-check: remove SMC by randomly selecting light parton from
a different point on the FO hypersurface — long high-Mc tail
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On the suppression of high-mass clusters
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Both in our model and in QCD event generators like e.g. HERWIG (B.R.
Webber, NPB 238 (1984) 492) one gets a steeply falling M distribution
due to preferential cluster formation between collinear partons
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@ In our model this is due to the SMC arising from recombining
nearby partons;
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On the suppression of high-mass clusters
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Both in our model and in QCD event generators like e.g. HERWIG (B.R.
Webber, NPB 238 (1984) 492) one gets a steeply falling M distribution
due to preferential cluster formation between collinear partons

@ In our model this is due to the SMC arising from recombining
nearby partons;

@ In Herwig, in ete™ collisions, this is due to the angular ordered
parton shower (pre-confinement)
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Results in AA: charmed-hadron pr-distributions
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At high pt better agreement with experimental data for curves including
momentum dependence of the transport coefficients (HTL curves)
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Results in AA: hadron ratios
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@ Qualitative agreement with STAR results;
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@ Overprediction of the D /D ratio measured by ALICE;

@ Milder centrality dependence of the A /D? ratio than ALICE
findings
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findings

@ Mild dependence on the transport coefficients, i.e. on the dynamics
in the deconfined phase
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@ Qualitative agreement with STAR results;

@ Overprediction of the D /D ratio measured by ALICE;

@ Milder centrality dependence of the A /DP ratio than ALICE
findings

@ Mild dependence on the transport coefficients, i.e. on the dynamics

in the deconfined phase

NB We have not attempted a tuning of the parameters to fit the data,

e.g. quark and diquark masses taken from default values.in PYTHIA
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Results in AA: fragmentation fractions
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@ FF's in AA collisions pretty independent from the centrality, leading
simply to a reshuffling of the pr-distribution (stronger radial flow of
charmed baryons in central events);

@ Strong enhancement of charmed baryon production wrt theoretical
predictions by default tunings of QCD generators in pp collisions
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@ FF's in AA collisions pretty independent from the centrality, leading
simply to a reshuffling of the pr-distribution (stronger radial flow of
charmed baryons in central events);

@ Strong enhancement of charmed baryon production wrt theoretical
predictions by default tunings of QCD generators in pp collisions

NB Model predictions for pp collisions displayed in the following
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How much flow acquired at hadronization?
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Big enhancement of charmed hadron production at intermediate pt

@ SMC efficient mechanism to transfer flow from the fireball to the
charmed hadrons;

@ stronger effect for charmed baryons due to the larger radial flow of
diquarks (mass ordering)
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Results in AA: elliptic flow
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Two different bands for charmed mesons and baryons arising in our
model from the higher mass of diquarks involved in the recombination
process (mass scaling rather than quark-number scaling)
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The role of SMC
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Explore the role of SMC's combining the HQ with a thermal particle chosen
from a different point on the FO hypersurface — recombining partons no
longer collinear, hence:
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from a different point on the FO hypersurface — recombining partons no
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@ No big enhancement of the charmed hadron v,
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Explore the role of SMC's combining the HQ with a thermal particle chosen
from a different point on the FO hypersurface — recombining partons no
longer collinear, hence:

@ No big enhancement of the charmed hadron v,
@ Larger invariant mass of the formed cluster — fragmentation into a

larger number of hadrons as a standard Lund string, with no modified HF

hadrochemistry
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Some comments

Crucial point: formation of quite light color-singlet clusters undergoing in most
cases a decay into a charmed hadron plus a very soft particle.
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Some comments

Crucial point: formation of quite light color-singlet clusters undergoing in most
cases a decay into a charmed hadron plus a very soft particle. Ingredient
already necessary in the past to describe peculiar effects in charm
hadroproduction at Fermilab and SPS (e.g. 7~ + p collisions)
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Second endpoint boosts the string along the direction of the beam-remnant
(beam-drag effect), leading to an asymmetry in the rapidity distribution of
D" /D~ mesons

Op— — Op+

Op— + op+

16/22



Some comments

Crucial point: formation of quite light color-singlet clusters undergoing in most
cases a decay into a charmed hadron plus a very soft particle. Ingredient
already necessary in the past to describe peculiar effects in charm
hadroproduction at Fermilab and SPS (e.g. @~ + p collisions)

(a) D™ production

.4 '
(ii) cluster collapse (pion/ramnalt)

(1/N)dN/dM

2-hadron decay

3-hagéfl decay

25 3 35

Mgingiet

Second endpoint boosts the string along the direction of the beam-remnant

(beam-drag effect), leading to an asymmetry in the rapidity distribution of

D" /D~ mesons

Op— — Op+

Op- + op+

NB Small invariant-mass string can collapse into a single hadron: non-universal
flavor composition (E. Norrbin and T. Sjostrand, EPJC-17 (2000) 137)!
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On color-reconnections and pp collisions

:/D°

A,

0.5

Charmed baryon enhancement in pp collisions can be accounted for in
PYTHIA introducing the possibility of color-reconnection (CR).
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wweeees PYTHIA 8 (CR Mode 2)
-=+ PYTHIA 8 (CR Mode 3)
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W Catania, fragm.+coal
[ M. He and R. Rapp: 7
~——— SH model + PDG
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On color-reconnections and pp collisions

high-pT parton

P
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0uP
high-pT parton
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N \ 1

Charmed baryon enhancement in pp collisions can be accounted for in
PYTHIA introducing the possibility of color-reconnection (CR). Strings
have a finite thickness, in a dense environment they can overlap
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On color-reconnections and pp collisions

k, m

string 1
k

high-pT parton

string 2 high-pT parton

0 Hadron |
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L string 5
scatt. L scatt.
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1 string 3

string 4

Charmed baryon enhancement in pp collisions can be accounted for in
PYTHIA introducing the possibility of color-reconnection (CR). Strings
have a finite thickness, in a dense environment they can overlap and give
rise to a rearrangement of color connections to minimize their length.
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Charmed baryon enhancement in pp collisions can be accounted for in
PYTHIA introducing the possibility of color-reconnection (CR). Strings
have a finite thickness, in a dense environment they can overlap and give
rise to a rearrangement of color connections to minimize their length.
Implementing hadronization as a recombination process involving nearby
partons can be viewed as an extreme case of CR.

17/22



On color-reconnections and pp collisions
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Charmed baryon enhancement in pp collisions can be accounted for in
PYTHIA introducing the possibility of color-reconnection (CR). Strings
have a finite thickness, in a dense environment they can overlap and give
rise to a rearrangement of color connections to minimize their length.
Implementing hadronization as a recombination process involving nearby
partons can be viewed as an extreme case of CR. The effect on the
cluster mass distribution is the same.
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Addressing pp collisions in our model
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);
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Addressing pp collisions in our model

dsidn

@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);
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@ Perfect correlation between initial entropy (dS/dy) and final particle
multiplicity (dNen/dn), S &~ 7.2Ney
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Addressing pp collisions in our model

o(xy) (im™3), min-bias event so(xy) (fm3), high-mult event
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);

@ Perfect correlation between initial entropy (dS/dy) and final particle
multiplicity (dNen/dn), S &~ 7.2Ne,

@ Samples of 10° minimum-bias ((dS/dy)., =~ 37.6) and high-multiplicity
((dS/dy)o_10 ~= 187.5) events used to simulate HQ transport and

hadronization
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Results in pp: particle ratios
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@ Enhancement of charmed baryon/meson ratio qualitatively

reproduced

@ Multiplicity dependence of the radial-flow peak position observed
(just a reshuffling of the momentum, without affecting the yields)
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp

@ D-meson v, in high-multiplicity pp in agreement with CMS results
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp
@ D-meson v, in high-multiplicity pp in agreement with CMS results

@ Sizable fraction of v, acquired at hadronization
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Relevance for the Raa in nuclear collisions
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@ Slope of the spectra in pp better described including medium effects

@ Inclusion of medium effects in minimum-bias pp benchmark
fundamental to better describe charmed hadron Ras (left panel vs
magenta curve in the right panel), both the radial-flow peak and the
species dependence
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In summary

@ We developed a (partially) new model of HQ hadronization in
the presence of a hot/dense medium, like the one formed in
AA (and possibly pp) collisions, capable of addressing
modifications of HF hadrochemistry;
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In summary

@ We developed a (partially) new model of HQ hadronization in
the presence of a hot/dense medium, like the one formed in
AA (and possibly pp) collisions, capable of addressing
modifications of HF hadrochemistry;

@ Rather than attempting a precision fit of the data through a
fine tuning of the parameters we were interested in displaying
very general features of the proposed mechanism and its
connection with well known hadronization models employed in
the literature;

@ Strong implications for the extraction of transport coefficients
(same flow can be reproduced with a milder in-medium
interaction);

@ The generalization of the results to the pp and pA case is
currently in progress and first results have been displayed

22/22



