Energy loss and transport from small to large systems

A. Dainese, A. Morsch

CD challenges from pp to AA collisions

Main Topics we discussed ...

... not a systematic review of open questions, but rather driven by the interests of the participants and result of brainstorming

- Signals for energy loss in small systems
- Role of the pre-equilibrium stage
- Energy dependence of q-hat
- Energy loss in quarkonia production
- Better constraints on Heavy Flavor Diffusion
- Signals for Heavy Flavor Thermalisation
- Challenges from future high precision measurements

- $v_2 R_{pA}$ puzzle: $v_2 > 0$ and $R_{pA} \sim 1$ including charm and jets ...
- Described by CGC but would also expect $v_2(Y) > 0$ (not observed)
 - However, open b-hadrons and Y have v_2 compatible with 0
- HF $v_2 > 0$ also observed in pp

- Energy loss effects have not been observed in pp and p-Pb ...
 - ... within current experimental uncertainties.
 - Limits on energy loss outside jet cone have been put using h-Jet correlations.

- Energy loss effects are expected to be larger in High Multiplicity (HM) events
- Exp. search in these events is complicated by selection biases (interplay of jets and HM)
 - New directions:
 - Control N_{ch} dispersion on wide acceptance?
 - Redistribution of lost energy in the UE as possible signal?

- PYTHIA 8 Monash shows similar suppression pattern
- Need to understand this bias for jet quenching effect

Warning: Pythia not reproducing an effect does not necessarily mean there is no bias!

Recoil jet pseudorapidity distribution vs. event activity

ALI-SIMUL-347697

- Theory: connect v_2 to expected R_{pA}
 - Each model that describes v_2 >0 should provide estimation of minimum necessary energy loss effect on R_{pA} or other observables

Examples for possible "solutions" of the puzzle

- AMPT $v_2 > 0$, $Q_{ppb} \sim 1$ from parton escape mechanism (see: ALICE, arXiv:2212.12609)
- Glasma phase alone could give "diffusion" and no energy loss resulting in $R_{ppb} > 1$ which moves back to 1 through energy loss in a medium.

Role of the pre-equilibrium stage in AA

- Most model calculations assume no interactions in the first ~1 fm/c (before QGP formation)
- However, this phase could play a role in gluon radiation
 - Increase radiation in later QGP phase
- Could lead to large effect in estimation of q-hat and understanding of QGP interactions

Role of the pre-equilibrium stage in AA

- So far no interactions in the pre-equilibrium phase, however ...
- Glasma predicts large and anisotropic q-hat in 0-1 fm/c
- Needs effort from the theory community to understand consequences for v₂ and energy loss
- Are small systems a proxy for pre-equilibrium effects (since this phase dominates) ?

Energy dependence of q-hat

- q-hat calculations from first principles (2→2 and 2→3 partonic scatterings in PHSD (Dynamical QuasiParticle Model QGP phase) show significant jet-energy dependence
- Most energy loss implementations don't take this dependence into account
- What are the consequences for parton shower / jet shape?
- Can it be constrained from experimental data?
 - Bayesian analysis with constant relative / absolute energy loss from R_{AA}

```
quark jet q-hat (2→2)
I Grismanovskii, O Soloveva, ... PRC 106, 014903
```


jet-energy dependence

Energy Loss in Quarkonia Production

- Non-isolated direct J/ψ production
 - Possible explanation: Color octet radiates gluons becoming a singlet
 - Characterize correlated particles (in pp) to constrain the production mechanism
 - Expect soft gluon radiation ?

Energy Loss in Quarkonia Production

- Energy loss of color-octet in the medium?
- Explanation for J/ ψ suppression at high p_T ?
 - \circ CMS: R_{AA} for isolated and non-isolated J/ ψ
 - \circ Non-isolated J/ ψ more suppressed
 - \circ Measure modification of J/ ψ tagged jets structure
 - What about Upsilon production ?
- Also important in general for ccbar ?
 - ccbar stay for some time in a color octet state
 - Study suppression as a function of DD rel. angle

Heavy Quark Diffusion in the QGP

See also "Hadronization" summary talk

Heavy Quark Diffusion in QGP

- Impact of hadronization description on diffusion coefficient estimate:
 - Restrict to models that simultaneously describe R_{AA} , v_2 , Λ_c/D
- Other improvements:
 - Measurements at very low $p_{_{\rm T}}$
 - Important for models to provide uncertainty band (large effect on χ^2 /ndf)
 - Additional observables: $D^0 ESE v_2$, $D^0 v_2$ {4}, $D^0 v_3$, correlation of $D^0 v_n$ vs. pion v_n in ESE classes

Large sensitivity to *T* dependence

Heavy Quark Diffusion in QGP

- Ultimately: use B mesons (LHC Run 3++, sPHENIX)
 - Less uncertainty on transport description (Boltzmann, Langevin ..)
 - Larger mass makes it closer to the infinite-mass approximation used in lattice QCD calculation of diffusion coefficient

Signals for Heavy Flavor Thermalisation

$D\overline{D}$ correlations

- Azimuthal correlations constrain energy loss and angular decorrelation simultaneously
- sensitivity to collisional vs radiative eloss vs momentum scale
- full isotropization at low p_{T} ?
- Exploit also D-hadron correlations?
- Calculations with state-of-the-art models needed

Extraction of medium parameters from future high precision measurements - **Questions to theorists**

- Today: significant variability among models:
 - interactions with the medium
 - medium evolution
 - hadronisation
 - hadronic afterburner
 - + nuclear PDFs
 - o ...
- Is the choice (and number) of modelling parameters under sufficient control?
- Are the observables that experiments provide now already optimal?
 - e.g.: would there an advantage in the p_{T} distributions directly, instead of R_{AAP}
 - more importantly: are the observable we use clean enough for constraining the physics?

Extraction of medium parameters from future high precision measurements - **Challenges for experimentalists**

- Results of Bayesian analysis, e.g., are crucially sensitive to uncertainties...
 - Wrong uncertainties equals to wrong result...
 - Are our experimental uncertainties under sufficient control for the high-precision era?
 - Do we always strive for the best possible estimate of the systematic uncertainties?
 - or do we sometimes opt for mechanically evaluated and/or "conservative" ones?

... and to their correlations!

- within the same measured distribution
- between different measurements performed by different analysers
- even correlations with models used for the analysis (e.g. syst uncertainties)

A big Thank You to ...

- The organizers
 - Andrea, Lorenzo, LOC, IAC
- Plenary Speakers
 - Carlota Andres
 - Dong Jo Kim
 - Andre Ståhl Leiton
 - Salvatore Plumari
- Participants in the discussion sessions
 - In addition to the speakers ...
 - Federico Antinori
 - Ilia Grishmanovskii
 - Olga Soloveva
 - Stefano Trogolo
- Co-Convener during preparation
 - Francesco Prino