Track 3:

Event properties and hydro in small and large systems

EPOS4: a full general purpose event generator to do multi-observable analysis

Klaus Werner (talk)

- Pervasive statement: important to do multi-observable comparison!
- Core-corona description able to describe hadrochemistry and kinematics across systems
- Even low-multiplicity pp isn't pure corona! Perhaps more consistent with e⁺e⁻ expectation?

Interplay between equilibrated and non-equilibrated components with dynamical initialization framework

Yuuka Kanakubo (talk)

- Equilibrated versus non-equilibrated components: corecorona at work describing spectra
- Can we agree that the core-corona approach is general?
 - Yes: different densities present different behaviours
 - No: any clear two-phase division is artificial

Insights into the evolution of hadronic collisions with flow observables

Vytautas Vislavicius (talk)

• Beyond simple v_n s: correlation between quantities can tell us clues about the origin of phenomena!

- **Discussion**: correlations with momentum and rapidity may be quite revealing, especially in small systems
 - Local versus non-local fluctuations especially in rapidity! could pinpoint origin of collectivity signatures: initial state
 versus built up in system

Correlations and collectivity at LHCb Jiayin Sun (talk)

- Rapidity information is in fact accessible:
 - LHCb joins the game!
 - Rapidity dependence of long-range correlations visible
 - Non-boost-invariant models required for proper description
 - After upgrade in Run3:
 - Up to 30% in PbPb collisions
 - System size study with SMOG2 data
 - High statistics
 - With heavy flavor
- Potentially still interesting: backwards/midrapidity/forward correlations require same detector
- Realm in which projects such as ALICE 3 could help

Beyond simple elliptical flow: directed flow versus rapidity and others

From S. Plumari's talk

Collectivity manifests itself in multiple ways!

→ it's also important to explore different directions

- Elliptic and triangular flow → the 'default' approach, sure!
- directed flow versus rapidity
 - Is in models in which the initial condition is modeled in 'realistic' ways
 - Could exist also in core-corona implementations, to be checked
- Polarization due to medium vorticity
 - Exists due to system anisotropy as well as energy and momentum lost in interactions with the medium

Event properties and h

Energy loss and collectivity

- Deposited energy has to lead to some measure-able effect: "jet recoil"
- role of system size vs density (proton-proton collisions are small and dense, peripheral AA: larger, less dense)
 - Can we find signatures of collectivity created via energy loss? → fundamental to define momentum scale
 - -Opportunities with p-O, O-O collisions as well as with binary-scaling-free observables such as I_{AA}
- Time dependence of energy loss: data favors no loss in early times!
 - Possibly related to lack of energy loss in small systems
 - But collectivity still present: need to create complete picture

Backup

Λ polarization from thermalized jet energy

- Simulated via an initial deposition of energy and momentum in a fluid
- Evolution modeled via 3D relativistic hydrodynamics (MUSIC) at LHC energies

• We define a "ring polarization" observable:

$$\overline{\mathcal{R}}_{\Lambda}^{\hat{t}} \equiv \left\langle \frac{\vec{P}_{\Lambda} \cdot (\hat{t} \times \vec{p}_{\Lambda})}{|\hat{t} \times \vec{p}_{\Lambda}|} \right\rangle_{p_{T}, y}$$

 \vec{p}_{Λ} : momentum \vec{P}_{Λ} : polarization \hat{t} : jet axis

View the video at: https://www.sciencedirect.com/science/article/pii/S0370269321004408?via%3Dihub