Color-coherence in the weakly coupled picture

Adam Takacs* (University of Bergen, Norway)

Supported by the Trond Mohn Foundation BFS2018REK01

Introduction

What is perturbative in the medium?

CMS [O. Saarimäki's (2018)]

It is perturbative!

• pQCD is valid:

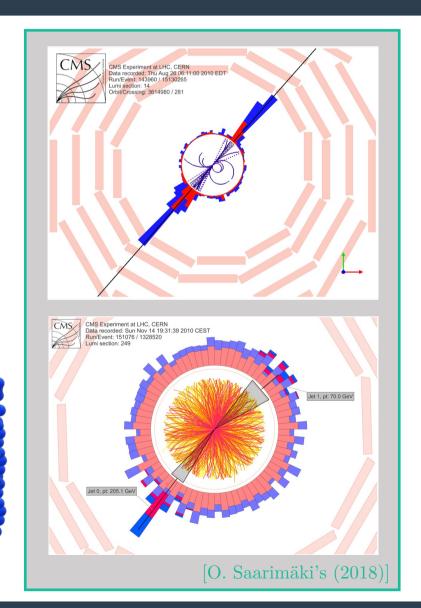
$$Q_{jet} \gg \Lambda_{QCD}$$

• jet-medium int. is perturbative:

$$Q_{jet} \gg Q_{med}$$

(medium bkg. is removable)

Is weakly coupled?


• medium is perturbative:

$$Q_{med}$$
?>>? Λ_{QCD}

pp

AA

What is perturbative in the medium?

It is perturbative!

• pQCD is valid:

$$Q_{jet} \gg \Lambda_{QCD}$$

• jet-medium int. is perturbative:

$$Q_{jet} \gg Q_{med}$$

(medium bkg. is removable)

[see talks from Daniel Pablos and Carlota Andres]

Is weakly coupled?

• medium is perturbative:

$$Q_{med}$$
?>>? Λ_{QCD}

pp

AA

QCD in the QGP medium

QCD with a colored background

[Zakharov, BDMPS, GLV, Wiedemann (1996-2000]

QCD with color bkg: $\mathcal{A}(x) + \mathcal{A}_0(t, x)$

• Multiple scatterings



Medium Feynman rules:

• medium propagator:

• medium vertex:

• Medium average:

$$\langle \mathcal{A}_0^-(t, \mathbf{x}) \mathcal{A}_0^-(t', \mathbf{x}') \rangle_{med}$$

- o Weakly coupled plasma $(T \gg \Lambda_{QCD})$: AMY
- o Random fields: BDMPSZ
- o recently: idk will evaluate later

QCD with a colored background

[Zakharov, BDMPS, GLV, Wiedemann (1996-2000)]

QCD with color bkg: $\mathcal{A}(x) + \mathcal{A}_0(t, x)$

Multiple scatterings



Medium Feynman rules:

medium propagator:

medium vertex:

Medium average:

$$\langle \mathcal{A}_0^-(t, \mathbf{x}) \mathcal{A}_0^-(t', \mathbf{x}') \rangle_{med}$$

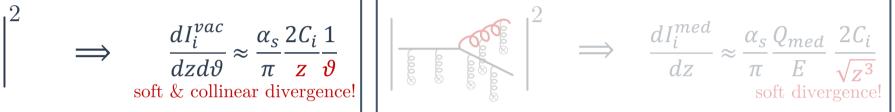
- Weakly coupled plasma $(T \gg \Lambda_{QCD})$: AMY
- Random fields: BDMPSZ
- recently: idk will evaluate later

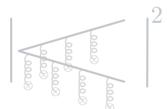
Adam Takacs

Vacuum

Medium

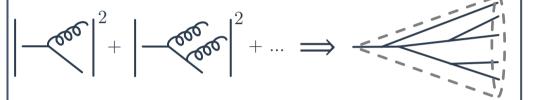
Emission:


Color-conservation:


Color-coherence:

$$\left| \underbrace{\langle \psi_{q} \rangle}_{+} + \underbrace{\langle \psi_{q} \rangle}_{+} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{vac}}{dzd\vartheta} \right) \\ \times \Theta(\vartheta_{q\bar{q}} > \vartheta_{g})$$
angular-ordering!

Decoherence time:


 \Rightarrow $\Theta(t_d > t)$ resolved resolved dipole!

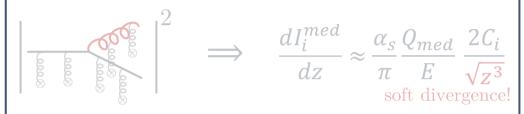
$$\Rightarrow \approx \left(\frac{dI_q^{med}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{med}}{dzd\vartheta} \right)$$

$$\times \Theta(t_f > t_d)$$

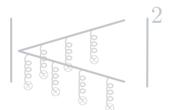
Vacuum

Resumming many emissions: collinear jet

Color-conservation:

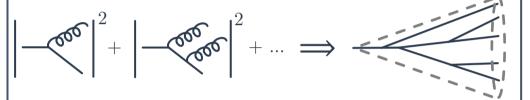


Color-coherence:


$$\left| \underbrace{\langle \psi_{q} \rangle}_{+} + \underbrace{\langle \psi_{q} \rangle}_{+} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{q}^{vac}}{dzd\vartheta} \right) \times \underbrace{\Theta(\vartheta_{q\bar{q}} > \vartheta_{g})}_{\text{angular-ordering!}}$$

Medium

Medium-induced emission:

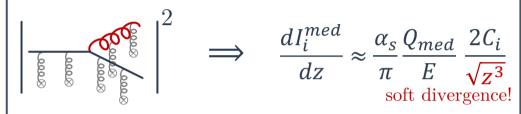

Decoherence time:

 \Rightarrow $\Theta(t_d > t)$ resolved resolved dipole!

Vacuum

Resumming many emissions: collinear jet

Color-conservation:

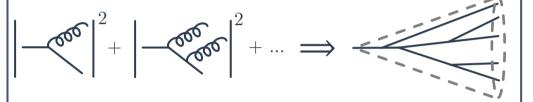


Color-coherence:

$$\left| \underbrace{\langle \psi_{q} \rangle}_{+} + \underbrace{\langle \psi_{q} \rangle}_{+} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{q}^{vac}}{dzd\vartheta} \right) \times \underbrace{\Theta(\vartheta_{q\bar{q}} > \vartheta_{g})}_{\text{angular-ordering!}}$$

Medium

Medium-induced emission:

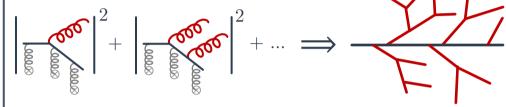


Decoherence time:

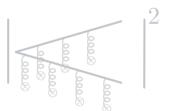
Vacuum

Resumming many emissions: collinear jet

Color-conservation:

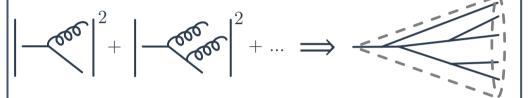


Color-coherence:


$$\left| \underbrace{\langle v_{q} \rangle}_{q} + \underbrace{\langle \sigma \sigma \rangle}_{q} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{vac}}{dzd\vartheta} \right) \times \Theta(\vartheta_{q\bar{q}} > \vartheta_{g})$$
angular-ordering!

Medium

wide-angle medium cascade

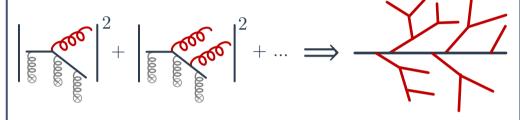

Decoherence time:

 \Longrightarrow $\Theta(t_d > t)$ resolved resolved dipole!

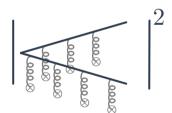
Vacuum

Resumming many emissions: collinear jet

Color-conservation:



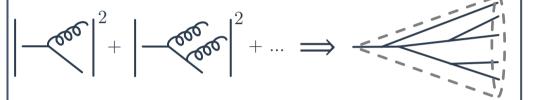
Color-coherence:


$$\left| \underbrace{\langle \psi_{q} \rangle}_{+} + \underbrace{\langle \psi_{q} \rangle}_{+} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\theta} + \frac{dI_{\bar{q}}^{vac}}{dzd\theta} \right) \times \underbrace{\Theta(\vartheta_{q\bar{q}} > \vartheta_{g})}_{\text{angular-ordering!}}$$

Medium

wide-angle medium cascade

Decoherence time:


 \Longrightarrow

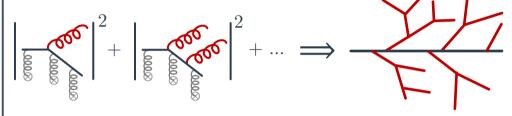
 $\Theta(t_d > t)$ resolved dipole!


$$\left| \begin{array}{c} \\ \\ \end{array} \right|^{2} \implies \approx \left(\frac{dI_{q}^{med}}{dzd\vartheta} + \frac{dI_{\overline{q}}^{med}}{dzd\vartheta} \right) \\ \times \Theta(t_{f} > t_{d})$$

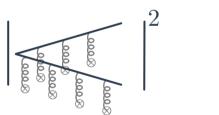
Vacuum

Resumming many emissions: collinear jet

Color-conservation:



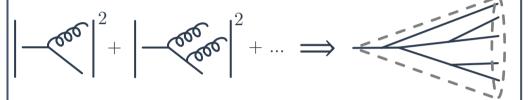
Color-coherence:


$$\left| \underbrace{\langle v_{q} \rangle}_{q} + \underbrace{\langle v_{q} \rangle}_{q} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{vac}}{dzd\vartheta} \right) \times \Theta(\vartheta_{q\bar{q}} > \vartheta_{g})$$
angular-ordering!

Medium

wide-angle medium cascade

Decoherence time:



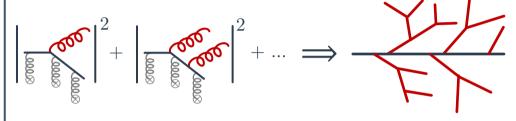
 $\Theta(t_d > t)$ resolved dipole!

$$\left|\begin{array}{c} \end{array}\right|^{2} \implies \approx \left(\frac{dI_{q}^{med}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{med}}{dzd\vartheta}\right) \\ \times \Theta(t_{f} > t_{d})$$

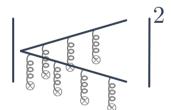
Vacuum

Resumming many emissions: collinear jet

Color-conservation:



Color-coherence:

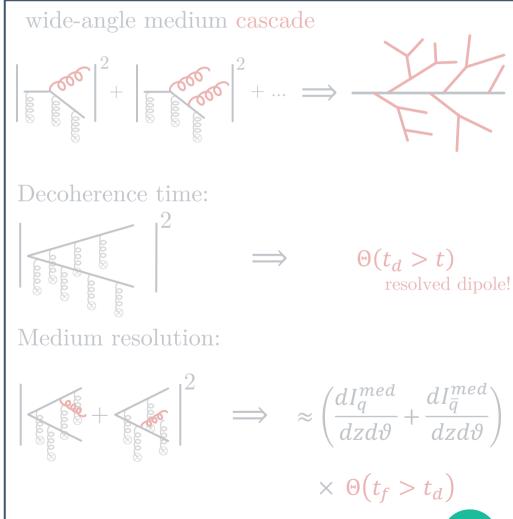

$$\left| \underbrace{\langle \psi_{q} \rangle}_{+} + \underbrace{\langle \psi_{q} \rangle}_{+} \right|^{2} \implies \approx \left(\frac{dI_{q}^{vac}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{vac}}{dzd\vartheta} \right) \times \Theta(\vartheta_{q\bar{q}} > \vartheta_{g})$$
angular-ordering!

Medium

wide-angle medium cascade

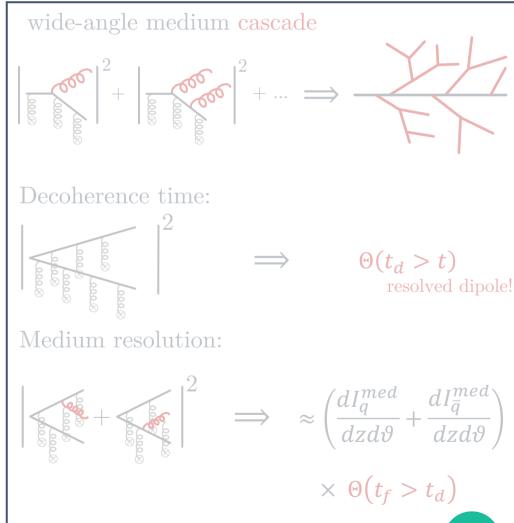
Decoherence time:

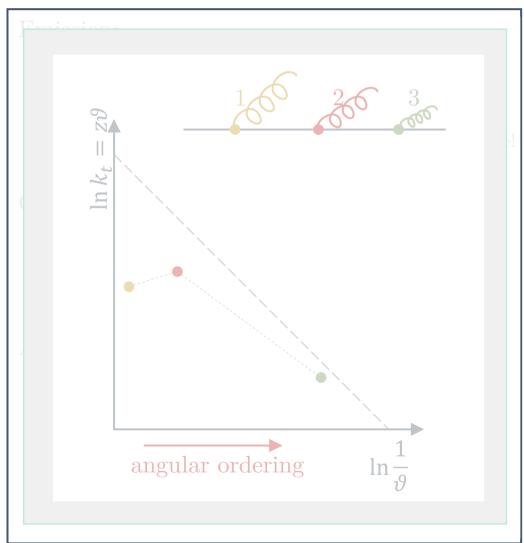
 \Longrightarrow


 $\Theta(t_d > t)$ resolved dipole!

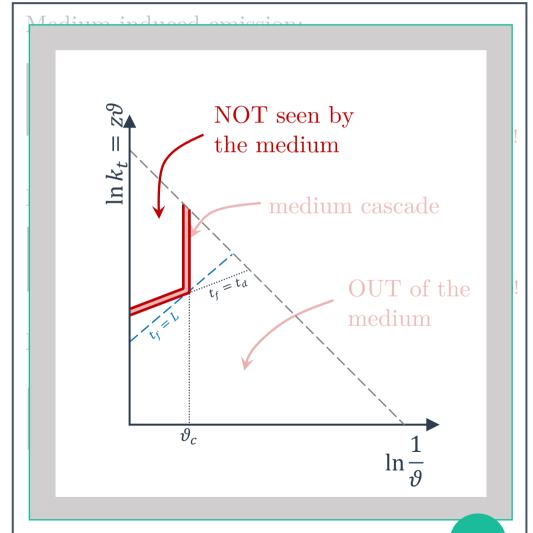
$$\begin{vmatrix} 2 \\ + & = \end{vmatrix}^{2} \implies \approx \left(\frac{dI_{q}^{med}}{dzd\vartheta} + \frac{dI_{\bar{q}}^{med}}{dzd\vartheta} \right) \times \Theta(t_{f} > t_{d})$$

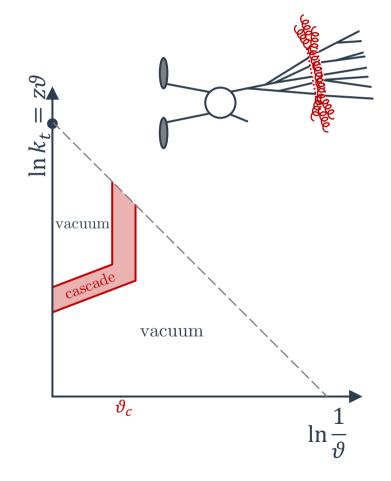
$\ln \frac{1}{9}$


Medium



angular ordering $\ln \frac{1}{9}$


Medium

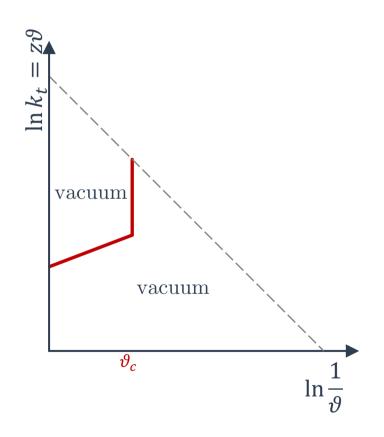

Medium

Factorized picture of jet evolution in medium

[Blaizot,Dominguez,Iancu,Mehtar-Tani] [Mehtar-Tani,Salgado,Tywoniuk] [Caucal,Iancu,Mueller,Soyez]

- 1. Hard scattering is unaffected*
- 2. Vacuum parton shower is unaffected
- 3. Switching at: $L > t_d = t_f$
- 4. Cascade of medium-induced emissions
- 5. Vacuum parton shower is unaffected#

Testing color-coherence and the factorized picture

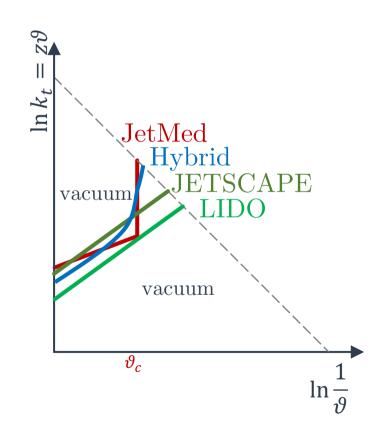


$R_{\rm AA}$ measurements (with bkg subtraction!):

- small R dependence of R_{AA}
- high p_T dependence of R_{AA}
- big centrality (L) dependence of R_{AA}

Jet substructure:

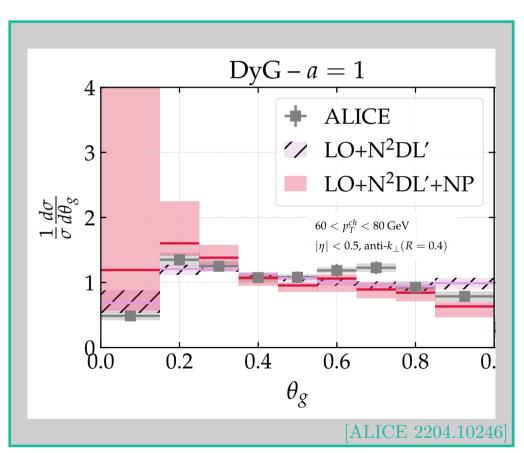
- **Dynamical grooming**, SoftDrop
- $R_{\rm AA}$ vs. substructure

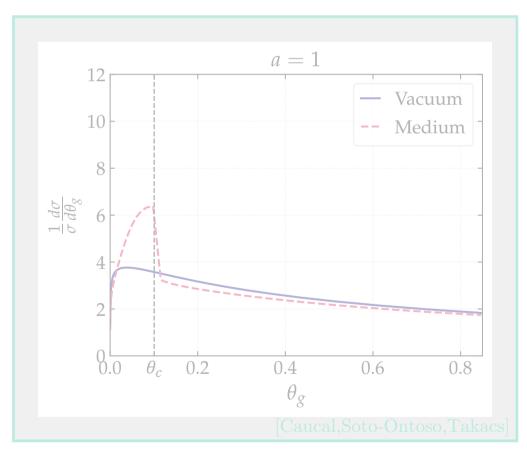


$R_{\rm AA}$ measurements (with bkg subtraction!):

- small R dependence of R_{AA}
- high p_T dependence of R_{AA}
- big centrality (L) dependence of R_{AA}

Jet substructure:

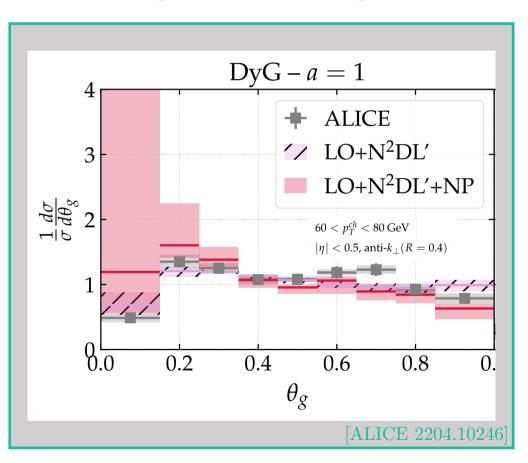

- **Dynamical grooming**, SoftDrop
- R_{AA} vs. substructure

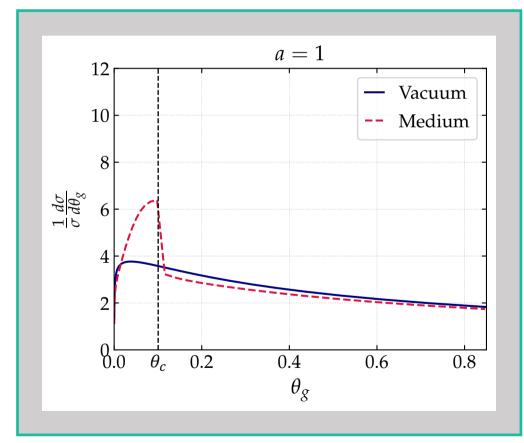

Angle of the hardest branching

[Caucal, Soto-Ontoso, Takacs]

Precise pQCD calculation in pp [arXiv:2103.06566]

Changes in AA [arXiv:2111.14768]


huge enhancement around $\vartheta_c!$


Angle of the hardest branching

[Caucal,Soto-Ontoso,Takacs

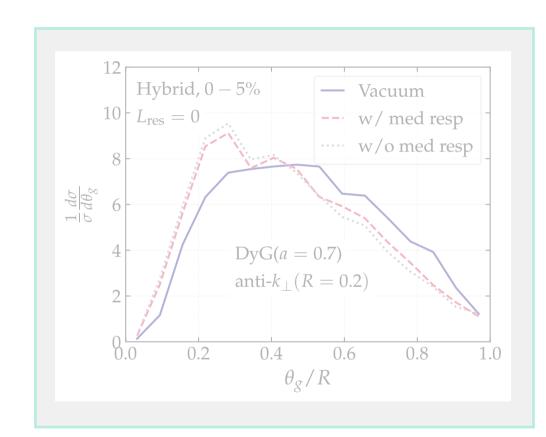
Precise pQCD calculation in pp [arXiv:2103.06566]

Changes in AA [arXiv:2111.14768]

huge enhancement around $\theta_c!$

Is θ_c really measurable?

 ${\it Caucal,} {\it Soto-Ontoso,} {\it Takacs,} {\it arXiv:} 2111.14768$


• HI event generator study:

 $JetMed \ [{\tt Caucal,Iancu,Soyez}]$

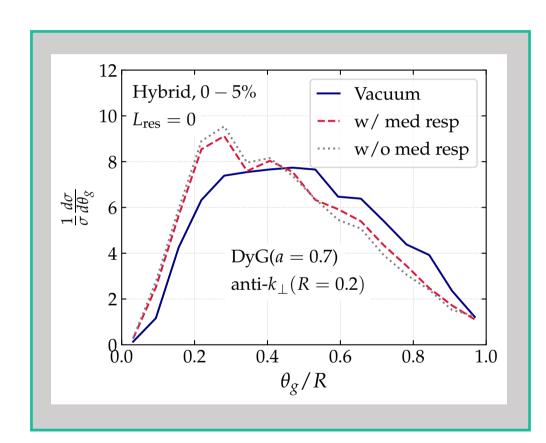
Jewel [Zapp,Krauss,Wiedemann]

Hybrid [Casalderrey-S, Milhano, Pablos, Rajagopal]

- Non-perturbative physics:
 - Fluctuating background
 - Medium response
 - Hadronization

Enhancement remains! Best chance to measure ϑ_c :

• R = 0.2, DyG a = 0.2


• HI event generator study:

JetMed [Caucal, Iancu, Soyez]

Jewel [Zapp, Krauss, Wiedemann]

Hybrid [Casalderrey-S, Milhano, Pablos, Rajagopal]

- Non-perturbative physics:
 - Fluctuating background
 - Medium response
 - Hadronization

Enhancement remains! Best chance to measure θ_c :

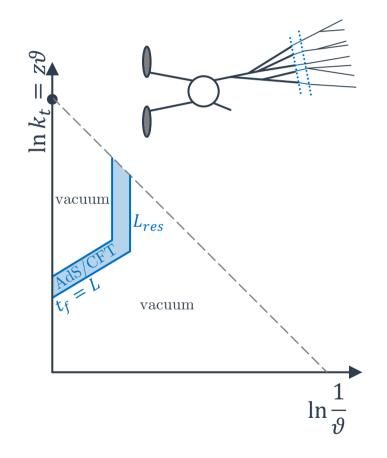
• R = 0.2, DyG a = 0.2

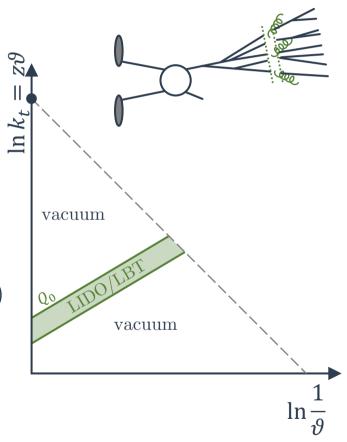
Summary

Summary

- What is **perturbative**, and what is **weakly coupled**.
- Color-coherence results in angular ordering in vacuum.
- In medium, color-connections gets **resolved** and **decohere**
 - ⇒ Factorized picture of jet energy loss
- Testing the factorized picture
- Dynamical grooming to measure ϑ_c

Thank you for the attention!


Other models and recent progression


Color-coherence in Hybrid

[Casalderrey-S,Milhano,Pablos,Rajagopal]

- 1. Hard scattering from Pythia8
- 2. Vacuum parton shower is unaffected
- 3. Switching scale: formation time & dipole size
- 4. Ads/CFT energy-loss
- 5. Vacuum parton shower the rest

- 1. Hard scattering from Pythia8
- 2. Vacuum parton shower is unaffected
- 3. Switching scale in virtuality
- 4. LIDO/LBT (LO QCD $2\rightarrow 2$, and $1\rightarrow 2$ higher-twist)
- 5. Vacuum parton shower the rest

Recent improvements: soft + hard scatterings

[Opacity expansion: Gyulassy,Levai,Vitev,Wiedeman, Higher-twist:Wang,Majumder]
[IOE formalism: Barata,Isaksen,Mehtar-Tani,Soto-Ontoso,Takacs,Tywoniuk

Emission in medium:

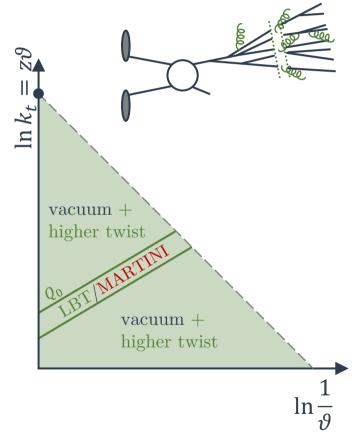
$$\frac{dI_i^{med}}{dz} = \int d\vartheta \frac{dI}{dzd\vartheta} \approx \frac{\alpha_s}{\pi} \sqrt{\frac{\hat{q}L^2}{4E}} \frac{2C_i}{\sqrt{Z^3}} \left[1 + \mathcal{O}(1^{st} \text{ opacity})\right]$$
small modification of the cascade!

Decoherence time (destroying color-connections):

$$\Delta^{med}(t) = \Theta(t_d > t)[1 + \mathcal{O}(1^{st} \text{ opacity})]$$
 modification of coherence!

Angular ordering:

$$\left| \frac{dI_{q\bar{q}}^{med}}{dzd\theta} \approx ? \quad \text{work in progress!} \right|^{2}$$

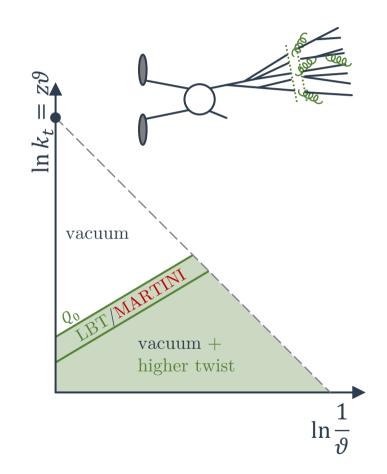

Color-coherence in OLD JETSCAPE

[Kumar et al, 2204.01163]

- Hard scattering from Pythia8
- MATTER (vacuum + higher-twist splittings)
- Switching scale in virtuality 3.
- LBT (LO QCD $2\rightarrow 2$, and $1\rightarrow 2$ higher-twist)

MARTINI (LO HTL $2\rightarrow 2$, and $1\rightarrow 2$ splittings)

MATTER (vacuum + higher-twist splittings)


Color-coherence in NEW JETSCAPE

[Kumar et al, 2301.02485]

- 1. Hard scattering from Pythia8
- 2. MATTER (vacuum $+ \frac{\text{higher-twist}}{\text{splittings}}$)
- 3. Switching scale in virtuality
- 4. LBT (LO QCD $2\rightarrow 2$, and $1\rightarrow 2$ higher-twist)

MARTINI (LO HTL $2\rightarrow 2$, and $1\rightarrow 2$ splittings)

5. MATTER (vacuum + higher-twist splittings)

