Experimental signatures of coherence and medium response Marta Verweij Utrecht University / Nikhef QCD challenges from pp to AA collisions February 13, 2023 ## Jet Quenching - How is the parton shower modified? - What is the exact mechanism modifying the shower? - Can we relate shower modifications to medium properties? Main experimental tool: jet substructure #### Jet modification in hot QCD medium Medium-induced energy loss Coherence effects Medium recoil Medium-induced radiation #### Jet modification in hot QCD medium Medium-induced energy loss Incoming parton Out-of-cone radiation R_{AA}<1 In-cone radiation Jet broadening Coherence effects Medium-induced radiation Medium recoil #### Phase space in medium 3 regions for a splitting happening in medium - 1) vacuum-like splitting inside medium that will be quenched - 2) medium-induced splitting → not uniform in Lund plane - 3) unresolved splitting arXiv:1808.03689 #### Regimes in radiation phase space #### Medium-induced emission are possible if: $$\omega < \omega_C = \frac{1}{2}\hat{q}L^2$$ and $$k_T < Q_S = \omega_C \theta_C = \sqrt{\hat{q}L}$$ Finite size effect High p_T : $p_T z_{cut} \gg \omega_C$ → Can only detect vacuum-like emissions Low p_T : $p_T z_{cut} \le \omega_C$ → Can also detect medium-induced Caucal, Iancu, Soyez, 1907.04866 & 2012.01457 Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced. Clear signature to look for Expecting decoherence angle to be smaller than 0.1 Small θ_g : less vacuum-like emitters from which energy can be radiated → less suppression observed in data Small θ_g : less vacuum-like emitters from which energy can be radiated → less suppression observed in data Caucal, Iancu, Soyez, 1907.04866 & 2012.01457 Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced. Is ALICE seeing the critical angle? Or is this due to the number of emitters? Or a selection bias? Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced. Is ALICE seeing the critical angle? Or is this due to the number of emitters? Or a selection bias? Or....? ## Suppression vs splitting angle ## Suppression vs splitting angle r_g decreases with p_T in vacuum Jet p_T selection + energy loss results in observed r_α dependence How much room remains for decoherent energy loss within the cone picture? # Grooming strength Jets with small r_q are less suppressed when more softer branches survive grooming ATLAS-CONF-2022-026 # Suppression vs opening angle Similar suppression observed for both measurements for large splitting angle #### Jet axes as substructure Ringer et al., PLB 808 (2020) 135634 #### Use pointing direction of jets to study - Medium-induced radiation - p_T broadening - → Study their interplay Observable: angle between jet axes - Standard ungroomed axis - Groomed axis Winner-takes-all axis #### Jet axes as substructure Grooming hardly moves the jet axis Narrowing effect also visible for ungroomed jets ALI-PREL-502376 #### Jet axes as substructure Disagreement with p_T broadening model remains when no grooming is used Data consistent with incoherent energy loss Limited sensitivity to distinguish between models → upgraded detectors should help ALI-PREL-50298 #### Medium response and mass https://arxiv.org/abs/2208.00813 Improved procedure to subtract recoils in JEWEL improves agreement with data Sensitivity to recoil subtraction procedure make it hard to interpret the data Angularities: models vs data #### Pb-Pb Large variation in models when comparing the distribution directly - JEWEL pp baseline is off and causes the disagreement with data in PbPb-to-pp ratio #### Medium response Medium excitation | wake | jet-correlated medium → Causing excess of soft particles at large angle Quenched parton shower + medium excitation Quenched parton shower Vacuum parton shower In this model, medium response needed to describe large angle. Ideally, constrain medium response contribution with data \rightarrow hadrochemistry Dilution of signal in heavy-ion jet data due to → Multiple physics mechanisms happening at the same time → Selection / survivor biases → QGP is not a brick: signal strength not equal for every jet #### Dilution of signal in heavy-ion jet data due to - → Multiple physics mechanisms happening at the same time possible solutions: less inclusive measurements, correlations - → Selection / survivor biases possible solutions: Z-hadron - → QGP is not a brick: signal strength not equal for every jet possible solutions: introduce surface bias, select on energy loss #### **Z-hadron** CMS PRL 128 (2022)122301 #### Summary Jets are never simple. And even more complicated when traversing a quark-gluon plasma. Making progress on understanding in-medium parton shower \rightarrow This leads to more accurate extraction of QGP properties (transport coefficient \hat{q} , (de)coherence angle θ_c , ...) But there are open questions