

Experimental signatures of coherence and medium response

Marta Verweij
Utrecht University / Nikhef

QCD challenges from pp to AA collisions February 13, 2023

Jet Quenching

- How is the parton shower modified?
- What is the exact mechanism modifying the shower?
- Can we relate shower modifications to medium properties?

Main experimental tool: jet substructure

Jet modification in hot QCD medium

Medium-induced energy loss

Coherence effects

Medium recoil

Medium-induced radiation

Jet modification in hot QCD medium

Medium-induced energy loss

Incoming parton

Out-of-cone radiation

R_{AA}<1

In-cone radiation

Jet broadening

Coherence effects

Medium-induced radiation

Medium recoil

Phase space in medium

3 regions for a splitting happening in medium

- 1) vacuum-like splitting inside medium that will be quenched
- 2) medium-induced splitting → not uniform in Lund plane
- 3) unresolved splitting

arXiv:1808.03689

Regimes in radiation phase space

Medium-induced emission are possible if:

$$\omega < \omega_C = \frac{1}{2}\hat{q}L^2$$

and

$$k_T < Q_S = \omega_C \theta_C = \sqrt{\hat{q}L}$$

Finite size effect

High p_T : $p_T z_{cut} \gg \omega_C$

→ Can only detect vacuum-like emissions

Low p_T : $p_T z_{cut} \le \omega_C$

→ Can also detect medium-induced

Caucal, Iancu, Soyez, 1907.04866 & 2012.01457

Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced.

Clear signature to look for Expecting decoherence angle to be smaller than 0.1

Small θ_g : less vacuum-like emitters from which energy can be radiated

→ less suppression observed in data

Small θ_g : less vacuum-like emitters from which energy can be radiated

→ less suppression observed in data

Caucal, Iancu, Soyez, 1907.04866 & 2012.01457

Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced.

Is ALICE seeing the critical angle?
Or is this due to the number of emitters?
Or a selection bias?

Jets with $\theta_g \ge \theta_c$ are suppressed while jets with $\theta_g \le \theta_c$ are relatively enhanced.

Is ALICE seeing the critical angle?
Or is this due to the number of emitters?
Or a selection bias? Or....?

Suppression vs splitting angle

Suppression vs splitting angle

r_g decreases with p_T in vacuum

Jet p_T selection + energy loss results in observed r_α dependence

How much room remains for decoherent energy loss within the cone picture?

Grooming strength

Jets with small r_q are less suppressed when more softer branches survive grooming

ATLAS-CONF-2022-026

Suppression vs opening angle

Similar suppression observed for both measurements for large splitting angle

Jet axes as substructure

Ringer et al., PLB 808 (2020) 135634

Use pointing direction of jets to study

- Medium-induced radiation
- p_T broadening
- → Study their interplay

Observable: angle between jet axes

- Standard ungroomed axis
- Groomed axis

Winner-takes-all axis

Jet axes as substructure

Grooming hardly moves the jet axis

Narrowing effect also visible for ungroomed jets

ALI-PREL-502376

Jet axes as substructure

Disagreement with p_T broadening model remains when no grooming is used

Data consistent with incoherent energy loss

Limited sensitivity to distinguish between models → upgraded detectors should help

ALI-PREL-50298

Medium response and mass

https://arxiv.org/abs/2208.00813

Improved procedure to subtract recoils in JEWEL improves agreement with data Sensitivity to recoil subtraction procedure make it hard to interpret the data

Angularities: models vs data

Pb-Pb

Large variation in models when comparing the distribution directly

- JEWEL pp baseline is off and causes the disagreement with data in PbPb-to-pp ratio

Medium response

Medium excitation | wake | jet-correlated medium

→ Causing excess of soft particles at large angle

Quenched parton shower + medium excitation

Quenched parton shower Vacuum parton shower

In this model, medium response needed to describe large angle. Ideally, constrain medium response contribution with data \rightarrow hadrochemistry

Dilution of signal in heavy-ion jet data due to

→ Multiple physics mechanisms happening at the same time

→ Selection / survivor biases

→ QGP is not a brick: signal strength not equal for every jet

Dilution of signal in heavy-ion jet data due to

- → Multiple physics mechanisms happening at the same time possible solutions: less inclusive measurements, correlations
- → Selection / survivor biases possible solutions: Z-hadron
- → QGP is not a brick: signal strength not equal for every jet possible solutions: introduce surface bias, select on energy loss

Z-hadron

CMS PRL 128 (2022)122301

Summary

Jets are never simple.

And even more complicated when traversing a quark-gluon plasma.

Making progress on understanding in-medium parton shower

 \rightarrow This leads to more accurate extraction of QGP properties (transport coefficient \hat{q} , (de)coherence angle θ_c , ...)

But there are open questions