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Beam Optics Control at the LHC
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Beam optics control at the LHC

Why and how is the beam optics controlled in the LHC?

Large Hadron Collider:

• 9300 magnets for bending and focusing the beam.

• Main experiments: ALICE, ATLAS, CMS, LHCb

• Collision rate: sufficient and balanced between 
experiments → Luminosity

➢ How to increase chances of collisions?
➢ How to ensure machine protection?
→ Beam Optics control
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• Luminosity:  maximize the number of collision events. 

Why and how is the beam optics controlled in the LHC?

Beam optics control at the LHC

ℒ ∼
𝑓 ⋅ 𝑁2

4𝜎2 𝜎 = 𝜀𝛽

𝜀
𝜷
→ Const
→ Determined by quadrupole 

arrangement and powering

Optics

Courtesy of Rogelio Tomas
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• Luminosity:  maximize the number of collision events. 

• Optics errors: beta-beating 

Why and how is the beam optics controlled in the LHC?

Beam optics control at the LHC

ℒ ∼
𝑓 ⋅ 𝑁2

4𝜎2 𝜎 = 𝜀𝛽

𝜀
𝜷
→ Const
→ Determined by quadrupole 

arrangement and powering 

• Access to the magnets for direct measurements is 
not possible during operation. 

→ Beam-based measurements and corrections of 
lattice imperfections.

Optics

Courtesy of Rogelio Tomas



Limitation of traditional optics control
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1. Instrumentation faults→ unreliable optics measurements

2. Corrections compensate deviations from optics design → what are the actual magnet errors?

3. Dedicated time to obtain advanced optics observables → how to reduce the time effort?

4. Uncertainties in the measured optics functions → reduce the noise without removing valuable information?

5. Missing data points due to the presence of faulty BPMs → How to reconstruct the missing data? 



Accelerators

• Operation

• Diagnostics

• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

Why applying ML to accelerators?

➢large amount of optimization targets
➢direct measurements are not possible
➢previously unobserved behavior

How can we benefit from ML in Accelerator Physics?



Accelerators

• Operation

• Diagnostics

• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

➢large amount of optimization targets
➢direct measurements are not possible
➢previously unobserved behavior

How can we benefit from ML in Accelerator Physics?

Machine Learning:
✓ Learn arbitrary models
✓ Directly from provided data

Why applying ML to optics control?



Introduction to Machine Learning
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Teaching machines to learn from experience

What is “Learning”?

• Traditional programming • Machine Learning approach

Data

Program
Output

Data

ProgramOutput

learn from data automaticallycreating manually a set of 
commands and rules
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Relevant ML concepts and definitions

Supervised Learning

Unsupervised Learning

• Input/output pairs available
• Learn a mapping function, 

generalizing for all provided data
• Predict from unseen data 

• Only input data is given
• Discover structures and patterns

What is “Learning”?

Regression

Classification Clustering



Optics Measurements at the LHC
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Measuring the optics

What are the limitations of traditional techniques?

Turn-by-turn beam position
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• Excite the beam to perform transverse 
oscillations.

→ Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn

• Harmonic analysis using 
Fast Fourier Transform (FFT)

Denoising (SVD)
Signal cuts

Semi-automatic and 
manual cleaning of 

outliers
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Measuring the optics

What are the limitations of traditional techniques?

Turn-by-turn beam position
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Denoising (SVD)
Signal cuts

Semi-automatic and 
manual cleaning of 

outliers

Optics

Unphysical values still 
can be observed 

• Compute beta-beating 
and other optics functions

Δ
𝛽

/
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• Harmonic analysis using 
Fast Fourier Transform (FFT)

• Excite the beam to perform transverse 
oscillations.

→ Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn
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Measuring the optics: challenges 

What are the limitations of traditional techniques?

Local outliers while global beta-
beating is expected to be uniform

Causes a spike, 
obviously, a bad BPM

Causes a spike, but how to detect 
before computing the optics?

Δψ(s) Δψ(s)

Δ
𝛽

/
𝛽

𝜟𝜷/𝜷(𝐬)



Detection of faulty Beam Position Monitors
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• Faulty BPMs are a-priori unknown: no ground truth → Unsupervised Learning

• Applied clustering algorithms: DBSCAN[1], Local Outlier Factor[2], 
anomaly detection using Isolation Forest[3] implemented with Scikit-Learn.
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Detection of faulty Beam Position Monitors 

Instrumentation faults detection

1. “A Density-Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise” Ester, M., H. P. Kriegel, J. Sander

2. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May)., LOF: identifying density-based 
local outliers
3. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM‘08.

Harmonic analysis of all BPMs 
Detection of faulty signal 
prior to optics computation

• Outlier detection based on 
combination of several signal properties

• Immediate results

Avoid the appearance of 
erroneous optics computation
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Isolation Forest Algorithm

• Forest consists of several decision trees

• Random splits aiming to “isolate” each point

• The less splits are needed, the more “anomalous”

• Contamination factor: fraction of anomalies to be 
expected in the given data
→ First obtained empirically from the past 
measurements
→ Refined on simulations introducing 
expected BPM faults.

Conceptual illustration of Isolation Forest algorithm

• Input data: combination of several signal 
properties obtained from harmonic analysis of 
BPM turn-by-turn measurements

→ No additional data handling needed.
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Detection of faulty Beam Position Monitors 

Instrumentation faults detection

✓ Fully integrated into optics measurements at LHC
✓ Successfully used in operation under different optics settings.

• Instant faults detection instead of offline 
diagnostics.

• Full optics analysis is possible directly during 
dedicated measurements session instead of 
iterative procedure of cleaning and analysis.

Published in: Physical Review Accelerators and Beams: 
“Detection of faulty beam position monitors using unsupervised learning”, Phys. Rev. Accel. Beams 23, 102805.

Reduction of non-physical outliers in beta-beating: 
Averaged cleaning results, optics measurements in 2018.

Observed outliers

IF-identified bad BPMs



Optics Corrections: estimation of quadrupole errors
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Correcting the optics

What are the limitations of traditional techniques?

➢ What are the actual errors of individual quadrupoles?
➢ How to obtain the full set of errors in one step?

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

Before After

Δ
𝛽

/
𝛽

• Corrections are implemented by 
changing the strength of circuits

• Optics perturbations are caused by 
all individual magnets.
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Estimation of quadrupole errors

Estimation of magnet errors and optics corrections
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Estimation of quadrupole errors

Training ML- regression model:
• 1256 target variables: randomly assigned field errors in 

quadrupoles + other error sources

• 3304 input variables: optics functions

• Using Linear Regression as baseline model 
min
𝑤

𝑋𝑤 − 𝑦 2
2 + 𝛼 𝑤 2

2

Estimation of magnet errors and optics corrections
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Simulations: true magnet errors are known
→ directly compare prediction to simulated data → residual error 

Verifying ML approach: simulations

Estimation of magnet errors and optics corrections

How well can we correct the optics with predicted errors?



25

Estimation of quadrupole errors: measurements

Estimation of magnet errors and optics corrections

Difference?

Measurement

Simulation

Measurements: true magnet errors are unknown
→ Control beta-beating

predicted errors
applied to simulate the optics
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Test on LHC optics measurements, uncorrected machine

Estimation of quadrupole errors: measurements

Estimation of magnet errors and optics corrections

Difference?

Measurement

Simulation

Measurements: true magnet errors are unknown
→ Control beta-beating

predicted errors
applied to simulate the optics

Magnet errors predicted with ML-model reproduce the measured 
β –beating in uncorrected machine with average rms error of 7% and below 3% at IPs.
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Test on LHC optics measurements, uncorrected machine

Estimation of quadrupole errors: measurements

Estimation of magnet errors and optics corrections

✓ New method for local optics corrections
✓ Improved knowledge of direct error sources
✓ Simultaneously obtaining quadrupole errors for 

both beams,  at every location
→ Potential to save operation time
→ To be tested in LHC commissioning, April 2022

Published in:  The European Physical Journal Plus volume 136, Article number: 365 (2021) ,
“Supervised learning-based reconstruction of magnet errors in circular accelerators”.
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Optics control in HL-LHC studies
High Luminosity Large Hadron Collider: Upgrade of the LHC to push the performance in terms of beam 
size and luminosity.
• The local linear optics correction at the IR will be essential to ensure the HL performance. 
• Current LHC strategies might impose limitations → new correction strategies are needed.

Preliminary results obtained with simplified dataset 
(no noise added to input features):

Full set of quadrupoles 
all around the ring

Inner Triplet magnets in 
Interaction Regions

Courtesy of Hector Garcia Morales

• Systematic part of the gradient error (unknown) may 
have a significant impact on the β-beating. 



Denoising of optics measurements
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Denoising of optics measurements

• Uncertainties in the measured optics functions → “noise”   →

Simulated optics observables 
+ noise

Denoised optics

Autoencoder Neural Network

Noise in the measurements degrades the 
performance of corrections techniques
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Virtual Diagnostics

✓ Reconstruction error is by factor 2 smaller 
than the noise present in the signal.

Simulated data: Noise Reduction Simulated data: Reconstruction 

✓ Reliable reconstruction after denoising

Denoising of optics measurements

➢ Potential improvement of measurements quality
➢ Possibility to reconstruct the phase advance at the location of faulty BPMs.



Reconstruction of advanced optics observables
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Reconstruction of 𝛃-beating in Interaction Regions 

Virtual Diagnostics

➢ Special technique to measure beta-function at IP is needed:

➢ How to reconstruct optics observables without direct measurements?

• Modulation of quadrupole gradient
• Computation of average beta-function
• Propogate beta-function values to IP
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Reconstruction of 𝛃-beating in Interaction Regions 

Virtual Diagnostics

Reconstruction error:  
𝜷𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅−𝜷𝒓𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅

𝜷_𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅
= 1% 

✓ comparable to measurement uncertainty of 
traditional method.

Simulations LHC Measurements, BPMs left and right from Interaction Points

✓ Great potential to reduce measurements time
✓ Applicable to estimation of other optics 

observables (e.g. horizontal dispersion)



Outlook and Summary
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ML applied to modeling and optimization
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Muon Collider Design study [1]:
• Reduction of transverse emittance of produced muon beams as one of the biggest challenges: 
→ Final Cooling system with challenging design
→ High dimensional parameter space to be optimized in order to achieve low emittance, high intensity muon beams
→ Trade-off between different optimization objectives 

1. Speeding up optimization:

• Extending existing simulation frameworks towards 
automatic, fast executing optimization.

• Exploring application of Supervised Learning 
→ surrogate models

2. “Backwards” design:

✓ First results demonstrating orders of magnitude optimization speed up 
✓ Accurate prediction of initial parameters to achieve desired cooling performance

[1]: https://muoncollider.web.cern.ch
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Achieved Results

✓ ML-based toolbox for optics control:
• Detection of instrumentation faults → no manual cleaning and repeated optics analysis
• Estimation of individual magnet errors → Better knowledge and control of individual optics errors
• Denoising of optics measurements → Increasing the quality of the measurements
• Reconstruction of optics observables   → Additional observables without dedicated measurements



38Summary

✓ ML-based toolbox for optics control:
• Detection of instrumentation faults → no manual cleaning and repeated optics analysis
• Estimation of individual magnet errors → Better knowledge and control of individual optics errors
• Denoising of optics measurements → Increasing the quality of the measurements
• Reconstruction of optics observables   → Additional observables without dedicated measurements

Achieved Results

Outlook

✓ Paving the way for new studies currently being in progress: 
- Optics corrections for High Luminosity – LHC upgrade: 

- local correction
- exploring Reinforcement Learning for determining correctors settings.

- Exploring more complex optics error sources: coupling corrections
- Optimizing the design of future colliders.
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• Machine learning for beam dynamics studies at the CERN Large Hadron Collider
https://doi.org/10.1016/j.nima.2020.164652

• Opportunities in Machine Learning for Particle Accelerators
https://arxiv.org/abs/1811.03172

• Optimization and Machine Learning for Accelerators (USPAS course)
https://slaclab.github.io/USPAS_ML/

Further References

https://doi.org/10.1016/j.nima.2020.164652
https://arxiv.org/abs/1811.03172


Thank you for your attention!
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Back-up slides
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Learning from data

Training input 
data

Training 
output data

example 1
example 2
example 3
.
.
.

What is “Learning”?
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Learning from data

Training input 
data

Function with adjustable 
parameters (weights, bias)

Model 
output

Training 
output data

example 1
example 2
example 3
.
.
.

𝒚 = 𝒇 𝒙𝒊𝒘𝒊+ 𝒃

What is “Learning”?



44

Learning from data

Training input 
data

Function with adjustable 
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss
(approximation error ):

e.g. Mean Squared Error
example 1
example 2
example 3
.
.
.

𝒚 = 𝒇 𝒙𝒊𝒘𝒊+ 𝒃

Adjust parametersMinimizing the loss

e.g. Gradient Descent

What is “Learning”?

➢ Generalized model explaining relationship between input and 
output variables in all training samples.



45

Regression Models
• Linear model for input X / output Y pairs, i – number of pairs (training samples): 𝒇 𝑿,𝒘 = 𝒘𝑻𝑿

• Squared Loss function for model optimization: 𝑳 𝒘 =
𝟏

𝟐


𝒊
𝒀𝒊 − 𝒇 𝑿𝒊; 𝒘

𝟐

• Find new weights minimizing the Loss function: 𝒘∗ = 𝐚𝐫𝐠𝒎𝒊𝒏𝒘𝑳(𝒘)

→ Update weights for each incoming input/output pair.

→ Regularization places constraints on the model 
parameters (weights)

- Trading some bias to reduce model variance.

- Using L2-norm: 𝜴 𝒘 =
𝒊
𝒘𝒊
𝟐, adding the constraint

𝜶𝜴 𝒘 to the weights update rule
- The larger the value of 𝜶, the stronger the shrinkage 

and thus the coefficients become more robust.

Too much “flexibility” in weights update can lead to overfitting
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Training and generalization: no perfect model needed!

Simple models underfit
• Derivate from data (high bias)
• Do not correspond to data structure

(low variance)

Complex models overfit
• Very low systematical deviation (low bias)
• Very sensitive to data (high variance)

We don‘t want „look up tables“
We don‘t want unreliable prediction

→ Bias-Variance tradeoff



Faulty BPMs detection: simulation study

➢ Comparing different suitable techniques:
The presence of a single faulty BPM has more significant negative 
impact on the optics computation than the absence of a good 
BPM 
→ IF is preferred method for the LHC.

➢ Averaged results over 100 
simulations

➢ Tuning of IF-algorithm after finding optimal settings for SVD-
cleaning:

→ Trade-off between eliminating bad BPMs and removing good BPMs 
as side effect by setting the expected contamination rate
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IF in the LHC operation: detecting unknown failures

• Some artifacts in the signal are known to be related to BPM failures (manual cleaning would time 
consuming, but potentially possible).

• How to deal with unknown failure modes?

First observed in: “Analysis of tune 
modulations in the LHC”, D.W. Wolf
Related to BPM failure: L. Malina, 
“Noise and stabilities”, 
https://indico.cern.ch/event/859128/

Since IF is based on the structures in given data
➢ Ability to identify previously unknown failures

Several BPMs with unusual pattern in the 
spectra indicating a new failure mode


