Search for Beyond Standard Model Higgs boson using Machine Learning techniques

Punnawich Chokeprasert
March, 11 2022
Objective

H \rightarrow b\bar{b}

- Developing machine learning model to classify signal and background
- to be continue..
Data → Histogram → Select features → ... → Train/Test model → Standardization
Simulated signal & background data from CMS detector

<table>
<thead>
<tr>
<th>signal</th>
<th>mbb</th>
<th>weight</th>
<th>njets</th>
<th>mbjets</th>
<th>pttbb</th>
<th>etabb</th>
<th>phi bb</th>
<th>ebb</th>
<th>dKbb</th>
<th>deta23</th>
<th>dphi23</th>
<th>m4j</th>
<th>ptj4</th>
<th>etaj4</th>
<th>phi j4</th>
<th>sj4</th>
<th>btagj4</th>
<th>qqlikelihoodj4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>345.83782</td>
<td>0.858359</td>
<td>6.0</td>
<td>2.0</td>
<td>75.513298</td>
<td>-1.442189</td>
<td>-3.073818</td>
<td>384.739929</td>
<td>3.024805</td>
<td>...</td>
<td>2.089880</td>
<td>1.804841</td>
<td>0.990332</td>
<td>4.768305</td>
<td>27.505312</td>
<td>-0.517511</td>
<td>-2.066694</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>583.201172</td>
<td>1.109031</td>
<td>10.0</td>
<td>3.0</td>
<td>95.676212</td>
<td>1.151875</td>
<td>-1.984409</td>
<td>606.568276</td>
<td>3.028642</td>
<td>...</td>
<td>1.114682</td>
<td>0.379896</td>
<td>1.051146</td>
<td>10.119869</td>
<td>65.242346</td>
<td>-1.503866</td>
<td>-2.282077</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>487.103455</td>
<td>1.336773</td>
<td>4.0</td>
<td>3.0</td>
<td>84.770584</td>
<td>2.178545</td>
<td>1.611822</td>
<td>617.533630</td>
<td>2.926962</td>
<td>...</td>
<td>1.813335</td>
<td>0.988700</td>
<td>1.520892</td>
<td>5.384031</td>
<td>23.345843</td>
<td>-2.528091</td>
<td>-2.979945</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>548.418823</td>
<td>0.012480</td>
<td>6.0</td>
<td>3.0</td>
<td>30.336550</td>
<td>-2.785221</td>
<td>-1.269002</td>
<td>601.404175</td>
<td>3.391187</td>
<td>...</td>
<td>1.141670</td>
<td>1.039607</td>
<td>0.471834</td>
<td>3.477458</td>
<td>13.080956</td>
<td>1.430781</td>
<td>1.545525</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>599.956750</td>
<td>-1.212817</td>
<td>11.0</td>
<td>2.0</td>
<td>28.596281</td>
<td>3.302835</td>
<td>0.181096</td>
<td>706.829102</td>
<td>3.052177</td>
<td>...</td>
<td>1.425590</td>
<td>1.281456</td>
<td>0.603894</td>
<td>4.078289</td>
<td>16.287827</td>
<td>-1.30672</td>
<td>-1.431198</td>
</tr>
</tbody>
</table>

...
Select features

Selected features

['signal', 'm_bb', 'n_jets', 'e_ee', 'dR_bb', 'dR_ee', 'dPhi_bb', 'dPhi_ee', 'pt_j1', 'e_j1', 'pt_j2', 'eta_j2', 'btag_j2', 'qq_likelihood_j2', 'btag_j3', 'qq_likelihood_j3', 'dR_l3', 'dPhi_l3', 'btag_j4']
Standardization

\[Z = \frac{X - \mu}{\sigma} \]

```python
from sklearn.preprocessing import StandardScaler
x_train_stand = StandardScaler().fit_transform(x_train)
x_test_stand = StandardScaler().fit_transform(x_test)
```
ML Model

Activation Function

ReLU
\[
\max(0, x)
\]

Sigmoid
\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

Loss Function

Binary Cross Entropy
\[
J(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} H(p_n, q_n) = - \frac{1}{N} \sum_{n=1}^{N} \left[y_n \log \hat{y}_n + (1 - y_n) \log (1 - \hat{y}_n) \right]
\]

Optimizer

Adam (Adaptive Moment Estimation)
<table>
<thead>
<tr>
<th>Epoch</th>
<th>1/10</th>
<th>11716/11716</th>
<th>36s 3ms/step</th>
<th>loss: 0.2037</th>
<th>accuracy: 0.9201</th>
<th>val_loss: 0.1916</th>
<th>val_accuracy: 0.9252</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch 2/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1905</td>
<td>accuracy: 0.9257</td>
<td>val_loss: 0.1876</td>
<td>val_accuracy: 0.9272</td>
<td></td>
</tr>
<tr>
<td>Epoch 3/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1873</td>
<td>accuracy: 0.9274</td>
<td>val_loss: 0.1874</td>
<td>val_accuracy: 0.9276</td>
<td></td>
</tr>
<tr>
<td>Epoch 4/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1859</td>
<td>accuracy: 0.9278</td>
<td>val_loss: 0.1883</td>
<td>val_accuracy: 0.9259</td>
<td></td>
</tr>
<tr>
<td>Epoch 5/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1846</td>
<td>accuracy: 0.9286</td>
<td>val_loss: 0.1849</td>
<td>val_accuracy: 0.9289</td>
<td></td>
</tr>
<tr>
<td>Epoch 6/10</td>
<td>11716/11716</td>
<td>36s 3ms/step</td>
<td>loss: 0.1840</td>
<td>accuracy: 0.9286</td>
<td>val_loss: 0.1866</td>
<td>val_accuracy: 0.9279</td>
<td></td>
</tr>
<tr>
<td>Epoch 7/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1832</td>
<td>accuracy: 0.9291</td>
<td>val_loss: 0.1860</td>
<td>val_accuracy: 0.9284</td>
<td></td>
</tr>
<tr>
<td>Epoch 8/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1826</td>
<td>accuracy: 0.9291</td>
<td>val_loss: 0.1822</td>
<td>val_accuracy: 0.9305</td>
<td></td>
</tr>
<tr>
<td>Epoch 9/10</td>
<td>11716/11716</td>
<td>34s 3ms/step</td>
<td>loss: 0.1823</td>
<td>accuracy: 0.9295</td>
<td>val_loss: 0.1833</td>
<td>val_accuracy: 0.9298</td>
<td></td>
</tr>
<tr>
<td>Epoch 10/10</td>
<td>11716/11716</td>
<td>36s 3ms/step</td>
<td>loss: 0.1819</td>
<td>accuracy: 0.9295</td>
<td>val_loss: 0.1842</td>
<td>val_accuracy: 0.9295</td>
<td></td>
</tr>
</tbody>
</table>
END