CMOS Sensors for the Nominal DESY Beam Telescope

Marc Winter (IPHC/ex-IReS/Strasbourg)

on behalf of DAPNIA-Saclay, LPSC-Grenoble, LPC-Clermont, IPHC-Strasbourg

OUTLINE

• Reminder (from transparencies shown in Oct. '06 in Munich):

⇔ Basic improvements provided by final sensors
 ⇔ Development strategy

- Status of the development :
 - \Rightarrow Column // r.o. architecture with integ. discri. \Rightarrow ADC \Rightarrow Ø micro-cicuits
- Next steps :
 - \Rightarrow Spatial resolution \Rightarrow Read-out frequency \Rightarrow Availability
- Summary

-

 \Rightarrow Improvements focus on sensors equipping the arms (not DUT surface) :

Increase of read-out speed by one order of magnitude :

 \Rightarrow Demonstrator provides frame read-out time of 1.6 ms (possibly 800 μs)

 \approx Final sensors will provide frame read-out time \sim 100 μs (possibly \sim 50 μs)

• Extension of sensitive area by factor 3.5 :

 \Rightarrow Demonstrator sensitive area : 7.68 x 7.68 mm²

 \Rightarrow Final sensor sensitive area : 20.48 x 10.24 mm 2

 \rightarrow encompasses width of ILC-VD sensors

Integrate several other improvements resulting from R&D progress

(ightarrow signal amplification, data compression, etc.)

- 3 micro-circuit components developed in parallel :
 - ⇔ column // architecture with binary output
 - ADCs to be integrated at end of columns
 - $\Rightarrow \emptyset$ micro-circuits to be integrated besides ADCs
- Sharing of tasks :
 - ⇔ Col. // architecture design : DAPNIA & IPHC
 - ⇔ ADC designs : LPC-Clermont, LPSC-Grenoble, DAPNIA, IPHC
 - $\Rightarrow \emptyset$ micro-circuit design : IPHC (or nearly so ...)
 - Chips characterisation : IN2P3 (several labs), DAPNIA, DESY et al., INFN (several labs)
 - \star likely to be a bottle neck ...
- 2 design options under consideration :
 - ⇒ Sensors with binary encoding of signal charge : most straightforward
 - Sensors with 4- or 5-bit ADC encoding : will provide twice better spatial resolution
 - \Rightarrow Discussion needed to refine sensor requirements

Status of the Development

EUDET-JRA1 meeting

Fast Column Parallel Architecture

MIMOSA-16 design features :

- Fab. via STAR engin. run (Summer '06)
- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–16 μm epitaxy instead of \lesssim 7 μm
- 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (repeated at end of each column)
- discriminator at end of each column
- 4 sub-arrays :
 - st 2 like MIMO-8: 1.7x1.7 & 2.4x2.4 μm^2 diodes
 - * 1 with ionising radiation tol. pixels
 - ${\rm **}$ 1 with enhanced in-pixel amplification (against noise of r.o. chain) & 4.5x4.5 μm^2 diode

24 col. with discri.

Status and Plans :

- back from foundry < end Oct. '06 \longmapsto lab tests \geq Nov. '06 (DAPNIA) \longmapsto beam tests \geq Summer 2007
- next generations :
 - st small prototype (48+16 col. ? of 256 pixels, \gtrsim 16 μm pitch, optimised pixels)
 - ***** small prototypes with ADCs replacing or downstream of discriminators

MIMOSA-16 Lab Test Results (Analog Part)

Temporal noise vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

08/01/07

Résumé résultats Mirrosa-16 chip#0

2

\Rightarrow Results compatible with MIMOSA-8 and -15 performances

MIMOSA-16 Lab Test Results (Analog Part)

FPN (dispersion of pedestal) vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

08/01/07

Résumé résultats Mirrosa-16 chip#0

1

\Rightarrow FPN << pixel noise (as wanted)

08/01/07

MIMOSA-16 Lab Test Results (Analog Part)

Pedestal Mean vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

Résumé résultats Mirrosa-16 chip#0

З

\Rightarrow No feature observed

MIMOSA-16 Lab Test Results (Analog Part)

Charge Collection Efficiency vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

09/01/07

Résumé résultats Mirrosa-16 chip#0

 \Rightarrow Poor charge coll. efficiency for S1 (1.7x1.7 μm^2) and S2/S3 (2.4x2.4 μm^2)

 \hookrightarrow already observed with MIMOSA-15 (suspected origin in diffusion of P-well reducing the contact surface between N-well and epitaxy) \rightarrow seems confirmed by S4 (4.5x4.5 μm^2 diode)

4

Several different ADC architectures under development at IN2P3 and DAPNIA (most for ILC)

- ⇔ LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5- and 4-bit ADC for a column pair
- ⇔ LPCC (Clermont) : flash 4+1.5-bit ADC for a column pair
- ⇒ DAPNIA (Saclay) : Ampli + SAR (4- and) 5-bit ADC
- ⇒ IPHC (Strasbourg) : SAR 4-bit and Wilkinson 4-bit ADCs

Lab	proto.	phase	bits	chan.	F _{r.o.} (MHz)	dim. (μm^2)	${\sf P}_{diss}$	eff. bits	Problems
LPSC	ADC1	tested	5	8	15-25	43x1500	1700 μW	4	Offset & N
	ADC2	fab	4	8	25	40x943	800 μW		
	ADC3	design	4	> 8	25				
LPCC	ADC1	tested	5.5	1	5(T)–10(S)	230x400	20 000 μW	2.5	P_{diss} & bits
	ADC2	fab	5.5	1	10	40x1100	1000 μW		
DAPNIA	ADC1	tested	5	4	4	25x1000	300 μW	\gtrsim 2	Missing bits
	ADC2	fab	5	4	4	25x1000	300 μW		
IPHC	ADC1	fab	4	16	10	25x1385	660 μW		
	ADC2	fab	4	16	10	25x1540	545 μW		

 \Rightarrow 1st mature ADC design expected to come out in 2007

 \Rightarrow Submission of 1st col. // pixel array proto equipped with ADCs & Ø \geq end 2007

Study started end '06 (triggered by STAR HFT) \mapsto design started :

- \Rightarrow Ø logic restricted to one line at once (no clustering)
- ⊕ Micro-circuit identify discriminated pixels inside a line and give it an address
 ■
- ⇔ logic applied to subgroups of 64 (?) columns for data flow optimisation

Plans :

- \Rightarrow 1st prototype submission \lesssim end April 2007
- \Rightarrow final prototype \lesssim Summer 2008

Prospect on Development of Final Sensors

- Geometry :
 - ⇔ 1024 columns of 512 pixels
 - \Rightarrow 20 μm pitch ($ightarrow \sigma_{sp} <$ 2.5 μm)
 - **⇔** Sensitive area = 20.48 x 10.24 mm^2
- Functionnalities :
 - pixels with integrated CDS (possibly repeated at end of column)
 - sensor with integrated 4-/5-bit ADC
 - \triangleright ADC possibly preceded by discri. \rightarrowtail 1 ADC for \leq 64 col.
- Read-out speed (adapted to DESY beam) :
 - \Leftrightarrow default $t_{r.o.}$ = 512 lines / 5 MHz \sim 100 μs
 - \Rightarrow flexible clock frequency : e.g. 1 10 MHz ightarrow $\mathbf{t_{r.o.}}\sim$ 500 50 μs

Spatial Resolution

Single point resolution versus pixel pitch:

EUDET-JRA1 meeting

- clusters reconstructed with eta-function,
 exploiting charge sharing between pixels
- $\Rightarrow \sigma_{
 m sp} \sim {f 1.5} \ \mu{
 m m}$ (20 μ{m} pitch) $ightarrow \sigma_{
 m sp} \lesssim {f 2} \ \mu{
 m m}$ (30 μ{m} pitch)
- ⇔ obtained with signal charge encoded on 12 bits

 σ_{sp} dependence on ADC granularity:

- minimise number of ADC bits
 - \rightarrowtail minimise dimensions, t_{r.o.} & P_{diss}
- ⇔ effect simulated on real MIMOSA data (20 μm pitch ; 120 GeV/c π^- beam)

▷▷ σ_{sp} < 2 μm (4 bits) \rightarrow 1.7–1.6 μm (5 bits) (MIMOSA-9 : 20 μm pitch; T= + 20 $^{\circ}$ C)

Mimosa 9: resolution vs pitch

⇔ Warning : results based on simple pixel (N \leq 10 e⁻ ENC) ⇒ rad. tol. pixel integrating CDS (N \leq 15 e⁻ ENC) not yet evaluated

Baseline assumptions :

- \Rightarrow sensor made of 1024 col. of 512 pixels \rightarrowtail \sim 5.10 5 pixels / frame
- \Leftrightarrow t_{r.o.} = 100 $\mu s \rightarrow$ 10 kfps (can be twice more or twice less)
- $\Leftrightarrow \lesssim$ 5 hits / frame
- ⇔ noisy pixel rate > threshold \leq 10⁻⁴ →
- pixel data size = 2 Bytes

(10 bits of address & 5 bits for charge)

- Data rate from pixel noise :
 - $\Leftrightarrow \ \ 50 \ pixels \ \textit{/ frame} \rightarrowtail 1 \ MB/s$
- Data rate from beam particle hits :
 - \Leftrightarrow 5 hits of 9 pixels / frame \rightarrow 1 MB/s

Mimosa 9. Efficiency VS Fake

Fake rate per pixel

 \Rightarrow Total < 1 kB/frame \rightarrow few MB/s only

- Geometry :
 - 1280 columns of 640 pixels
 - \Rightarrow 16 μm pitch ($ightarrow \sigma_{sp} <$ 5 μm)

 \hookrightarrow MIMOSA-8 tests at CERN-SPS (Aug. '06) \rightarrowtail σ_{sp} \sim 7 – 8 μm (25 μm pitch : 7.2 μm)

- \Rightarrow Sensitive area = 20.48 x 10.24 mm²
- Functionnalities :
 - pixels with integrated CDS (possibly repeated at end of column)
 - ⇔ column ended with integrated discriminator → binary encoding of charge
- Read-out speed (adapted to DESY beams):
 - $\Leftrightarrow~$ default $t_{r.o.}$ = 640 lines / 6.4 MHz = 100 μs
 - \Rightarrow flexible clock frequency : e.g. 1 10 MHz \mapsto $t_{r.o.}$ = 640 64 μs
- \Rightarrow Less development needed to finalise sensor than with integ. ADC \Rightarrow available earlier

Semester	S1	S2	S 3	S4	S5	S6	S7	S 8
SP1								
SP2								
SP3 ?								
LP								
FS								

- Sensor production based on 5 steps (perhaps only 4, i.e. SP3 included in LP):
 - \Rightarrow MIMOSA-8 \equiv SP-1 : 25 μm pitch, epi < 7 μm
 - \Rightarrow MIMOSA-16 \equiv SP-2 : 25 μm pitch, epi \sim 11 or 16 μm , rad. tol., enhanced ampli.
 - \Rightarrow M16+ \equiv SP-3 : like SP-2 but 16–18 μm pitch, optimised pixels, 48+16 col. of 256/320 pix. ?
 - \Rightarrow M16++ \equiv LP : like SP-3 but 320 col. of 256/320 pixels and integ. \emptyset
 - ⇔ M16+++ \equiv FS : like LP but 1280 col. of 640 pixels

- Which single point resolution over which area ?
 - ← Arms : < 2.5 μm or < 5 μm over 2 x 1 cm² ?
 - \Rightarrow DUT surface : \sim 1 μm over 5 x 5 mm 2 ?
- Is t $_{r.o.}$ ~ 100 μs all right ? with how much flexibility ?
- When should the (final) sensors be delivered ?
- How do we organise ourselves w.r.t. sensor characterisation ?

Summary

Development of final sensors for BT arm is progressing :

- Column // archi. : M16 analog part tested at DAPNIA (thick epi., no HRES)
 - ightarrow results \sim OK but poor charge coll. eff. with M8-like diode \Rightarrow enlarge sensing diode
- \Rightarrow Compact & fast ADCs : in good progress \rightarrow 1st mature concept/design expected \sim end '07

Need to agree on :

 $\Rightarrow \sigma_{sp} \Rightarrow$ Frame r.o. speed \Rightarrow Delivery date

 \Rightarrow In particular : integrated ADC (σ_{sp} < 2.5 μm) vs integrated discri. alone (σ_{sp} < 5 μm)