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Abstract 
Length determination in the open field is routinely done 

with electronic distance meters (EDMs) that are limited in 

accuracy by the imperfect knowledge of the index of 

refraction of the light path through the atmosphere so that 

obtaining distances of several kilometers within an 

accuracy of 10-7 is a major challenge. Refractivity 

compensated EDMs, from the initial designs of the early 

1970s (e.g. the two-color Terrameter) until the last 

prototypes (e.g. the Arpent and the TeleYAG by CNAM 

and PTB, respectively) are exclusive solutions to overcome 

this problem which are not commercially available. By 

contrast, Global Navigation Satellite System (GNSS) 

technologies are relatively inexpensive positioning 

solutions that have experienced a wide adoption in the last 

decades. The use of scientific or commercial software for 

GNSS processing meets well the requirements of geodetic, 

surveying, and engineering applications but fails to do so 

in the field of length metrology, where the accurate 

uncertainty budget for all contributing error sources must 

be provided along with the resulting distance. We present 

our approach to GNSS-based length metrology, where all 

relevant error sources are characterized along with their 

uncertainties at the zero differences level in a relatively 

straightforward way and then rigorously propagated 

through the particular double-differenced equations used to 

obtain the distance. The method is applied to the CERN 

geodetic network using data from a GNSS campaign in 

July 2022 and the results are compared with those obtained 

for the same epoch by means of the Kern Mekometer 

ME5000 EDM as well as with other data available from 

previous campaigns. 

INTRODUCTION 

Length metrology is concerned with the realization, 

maintenance and dissemination of the SI meter. In the open 

air, the determination of distances consistent with the SI 

meter definition at a level of accuracy of the order of 10-7 

is a challege at present. High precision Electronic Distance 

Meters (EDMs) may be used for this purpose, although the 

achievable accuracy is limited by the determination of the 

index of refraction along the light path with a degree of 

uncertainty of the same order, certainly a hard task because 

it entails the accurate determination of atmospheric 

parameters representative to the entire light path.  

Refractivity compensated EDMs, from the early 

instruments developed in the late 1970s, e.g. the 

Terrameter [1], to the most recent telemeters, e.g. the 

‘Arpent’ Absolute Distance Meter (ADM) and TeleYAG 

prototypes developed for the GeoMetre project [2], may 

serve for the purpose but, certainly, they are costly and not 

easily accessible solutions. 

A possible alternative may be the use of Global 

Navigation Satellite Systems (GNSS) techniques. The 

GNSS scale is consistent with the SI meter definition by its 

maintenance by means of the use of atomic clocks and has 

been demonstrated to be worldwide stable at the level of 

0.001 ppm (1 ppb). The use of GNSS for length metrology 

has been limited, however, due to the impossibility in the 

rigorous assessment of the contributing error sources and 

their corresponding uncertainties. This alternative was 

studied by a consortium of European metrology institutes 

and universities in the Joint Research Project (JRP) SIB60 

Metrology for long distance surveying [3]. Their 

conclusions, summarized in their Good practice guide for 

high accuracy global navigation satellite system based 

distance metrology [4], indicate that the uncertainties of 

ionospheric and tropospheric delays, multipath effect and 

antenna phase center variations are mostly unknown, as is 

their propagation to the final results, which prevents a 

rigorous uncertainty analysis of the GNSS-based distance 

determination. The consortium was subsequently renewed 

for the development of a new research project, GeoMetre 

[2], aimed at improving the traceability of geodetic 

references to the SI meter definition for lengths up to 5 km, 

which included the development of novel distance meters 

and a novel strategy for GNSS-based distance 

determination. This new strategy crystallized in the Good 

practice guide on high-accuracy GNSS-based distance 

metrology [5], currently in the process of being adopted as 

Technical Guide by EURAMET, where all relevant error 

sources are simply characterized along with their 

uncertainties at the zero differences level and then 

rigorously propagated to the final baseline length through 

the particular double-differenced equations used in the 

estimation. The methodology has been applied to the 

CERN geodetic network as presented next. 

OBSERVATION CAMPAIGN 

A subset of five pillars from the CERN geodetic network 

was selected for the campaign observed by GNSS 

techniques within the GeoMetre project. Specifically, the 

pillars selected were those numbered 215 (on top of one of 

the buildings at CERN Meyrin site), 228, 231, 233 and 353, 

Fig. 1. 
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Figure 1: Selected pillars for baseline length 

determination. 

UPV, IGN and CERN jointly carried out the GNSS 

observation campaign from July 11, 2022, 9:57 GMT to 

July 14, 2022, 19:05 GMT enabling between 2 days 22.5 

hours and 3 days 3 hours of data for the different GNSS 

stations although a missing data gap of 8 hours at the 

beginning of July 14 was later discovered for station 233. 

Five LEICA GR25 GNSS receivers were used along with 

five individually calibrated LEICA AR25 choke ring 

antennas to observe the satellites of the four global 

constellations (GPS, Galileo, GLONASS and BeiDou) 

with a sampling rate of 1 s. The antenna height on each 

pillar was accurately measured by IGN using a total station 

and the same procedure as with the Arpent ADM prototype 

the week before when measuring the same distances 228-

231, 215-353, 215-231 and 231-233. We restrict this 

presentation to the GBDM+ approach and its comparison 

with the measurements performed by Kern Mekometer 

EDM also in the same observing epoch, as well as the 

comparison with previous values available in the CERN 

database. 

GNSS APPROACH TO LENGTH 

METROLOGY 

The current GNSS approach to length metrology stems 

from previous works of the group [6-9], which crystallized 

in the GBDM+ methodology described in the good practice 

guide [5]. This GBDM+ methodology estimates not only 

the baseline distance but the contribution of each error 

source to the distance and the corresponding total 

uncertainty, which enables using the methodology for 

metrological purposes. 

The minimum equipment for the determination of a 

baseline length consists of two receivers and two 

individually calibrated choke ring antennas, along with the 

necessary auxiliary equipment. The use of identical 

antenna types (oriented to the North) and identical 

mountings at both baseline ends is strongly recommended. 

Determination of antenna heights with folding rules is 

insufficient, they must be determined by accurate 

surveying methods (e.g. using a precise total station and 

reflector). A minimum of 24 h of observed data is 

recommended so that the residual periodic effects can be 

averaged out, or, preferably, several days (say three). 

With the observed data, a PPP processing is initially 

carried out for both receivers to obtain information on the 

error sources and their uncertainties in the receiver-to-

satellite line of sight (zero differences). Although one could 

obtain this initial information from different software –

from scientific packages like Bernese to commercial 

solutions or user-developed software– the use of the online 

free CSRS-PPP service [10] is proposed as an accurate, 

simple and friendly solution to obtain a set of initial 

information both internally consistent and consistent with 

standard IGS products. The following lists summarize the 

necessary data to start the GBDM+ baseline length 

computation. 

Initial data: 

• GNSS observation files (RINEX format) 

• Precise satellite ephemerides and clocks files (SP3 

format, obtained from IGS) 

• Satellite antenna phase center offsets and variations 

(ANTEX format, obtained from IGS) 

• Individual antenna calibrations (at least by one 

method) for each of the antennas in use (ANTEX 

format)  

Available data after the initial PPP processing for each 

station: 

• Earth-Centered Earth-Fixed (ECEF) approximate 

coordinates 

• Receiver clock offsets 

• Tropospheric delays 

• Carrier phase residuals 

Functional model 

Following [5] we can write the double-differenced 

carrier phase equation for a pair of receivers i and j and a 

pair of satellites k and l as 
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where the double-differenced carrier phase value in 

cycles 𝜑𝑖𝑗
𝑘𝑙 for the wavelength  has been subtracted the 

approximate double-differenced range 𝜌𝑖𝑗0
𝑘𝑙  (computed 

from the approximated coordinates) and the double-

differenced integer ambiguity 𝑁𝑖𝑗
𝑘𝑙, and corrected with the 

values of the double-differenced tropospheric delay 𝑇𝑖𝑗
𝑘𝑙 

and the double differenced multipath 𝑀𝑃𝑖𝑗
𝑘𝑙 . This multipath 

can be estimated by sidereal filtering. For the moment, the 

double-differenced ionospheric delay 𝐼𝑖𝑗
𝑘𝑙  (hopefully given 

to the public in the next CSRS-PPP release) can be 

neglected, estimated by applying the Klobuchar model or, 

in the case of using an iono-free combination, considered 

as zero. 



The three unknowns in Eq. (1), that is the corrections 

𝑑𝑋𝑗, 𝑑𝑌𝑗 and 𝑑𝑍𝑗 to the approximate coordinates of 

receiver j (having held fixed receiver i), are multiplied by 

coefficients which are the corresponding derivatives of the 

double-differenced range, (
𝜕𝜌𝑖𝑗
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𝜕𝑋𝑗
)
0

, (
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respectively. They can be obtained after a least squares 

adjustment of the system of equations along with the 

residual 𝜀𝑖𝑗
𝑘𝑙. With equations of the type of Eq. (1) we can 

form the system of equations 

  𝒌 + 𝒓 = 𝑨𝒙   (2) 

In the GBDM+ the system of equations Eq. (2) is 

transformed by using a Jacobian and a rotation matrix to 

  𝒌 + 𝒓 = 𝑨𝑹𝑱−1𝒙′ (3) 

so that its solution vector 𝒙′ directly yields in its first 

element the corresponding correction to the approximate 

baseline distance  

  𝒙′ = (

𝑑𝐷𝑖𝑗
𝑑𝛼𝑖𝑗
𝑑𝑧𝑖𝑗

) (4) 

and the corresponding uncertainty can be obtained in the 

first element of the covariance matrix. 

Error and uncertainty estimation 

After double-differencing most of the errors remaining 

at the zero-differenced level can be assumed to have been 

completely cancelled (or with completely negligible 

effects for all practical purposes). For some errors, 

however, this cannot be safely assumed. It is the case of the 

double-differenced tropospheric delay, multipath effect 

and antenna calibration. Their corresponding uncertainties 

need to be propagated to the double-differenced equations, 

first, and then through the least squares equations to the 

final baseline distance. Further details, including the 

mathematical expressions for uncertainty estimation and 

propagation are given in [5]. We now show in Figs. 2-4 

some results obtained for the current case study. 

 

Figure 2: Uncertainty (k = 2) in the double-differenced 

tropospheric correction for baseline 231-228 and a 

particular observation period of 8 hours. 

 

Figure 3: Uncertainty (k = 2) in the double-differenced 

multipath correction for baseline 231-228 and a 

particular observation period of 8 h. 

 

Figure 4: Uncertainty (k = 2) in the double-differenced 

antenna model correction for baseline 231-228 and a 

particular observation period of 8 h. 

As it can be seen, in this baseline – 231 to 228 – where 

the height difference is around -55 m, the main uncertainty 

propagated to double-difference equations, reaching up to 

several centimetres, comes from the tropospheric delay.  

These different uncertainties give rise to the final 

uncertainty budget as explained in the following 

subsection. 

Uncertainty propagation 

The equations to propagate uncertainties in the double-

difference equations to the final baseline distance are given 

in the good practice guide [5]. They include the 

propagation of double-differenced tropospheric, multipath 

and antenna model corrections as well as the propagation 

of the uncertainty by with the antenna height has been 

determined for each station. In the current case, where the 

IGN has accurately determined antenna heights by means 

of a precise total station, we assume the uncertainty in each 

antenna height to be 0.1 mm. Table 1 shows the uncertainty 

budget for the baseline distance 231-228, where as in [6] 



we have decided to split all the entire GNSS data timespan 

available in different time blocks of different lengths up to 

8 hours for obtaining different solutions whose consistency 

can be analyzed (see the following subsection). The 

uncertainty in the baseline distance due to the uncertainty 

in antenna heights is given as zero since the value obtained 

after uncertainty propagation is below one hundredth of a 

millimeter (0.000007 m). Also negligible was considered 

the effect of monument instability during the 

measurements. 

Table 1: Total uncertainty budget in the baseline distance 

231-228 propagated from all relevant error sources, 

values in mm (average values for each of the different 

time blocks), k = 2. 

Obs. time 

span (h) 

utropo.delay umultipath uant.cal. utotal 

1 1.79 0.86 0.90 2.24 

2 1.21 0.58 0.61 1.50 

3 0.95 0.46 0.48 1.18 

4 0.84 0.41 0.42 1.04 

6 0.67 0.34 0.34 0.83 

8 0.58 0.30 0.29 0.72 

 

Baseline lengths 

In Fig. 5 we can see the values obtained for baseline 231-

228 for each of the different time computation blocks. The 

variation between the different solutions is less than 1 mm 

and agrees completely with the observed dispersion. The 

weighted average value gives a final value for the distance 

of 2235.6911 m. 

 

Figure 5: Baseline distance 231-228, values in m. The 

average values for each of the different time blocks are 

indicated with the blue dots and the typical dispersion 

(k = 2) with the error bars. 

In Fig. 6 we can see the values obtained for baseline 215-

353 for each of the different time computation blocks. The 

variation between the different solutions is below 1 mm 

and agrees with the observed dispersion except for the two 

first time blocks that locate significantly apart. This might 

be an undesired effect of random nature or, as experienced 

in [6], it could be that due to the short timespan there were 

systematic errors not fully compensated that affect the 

result obtained for the distance. The weighted average 

value gives a final value for the distance of 4753.1237 m. 

 

 

Figure 6: Baseline distance 215-353, values in m. The 

average values for each of the different time blocks are 

indicated with the blue dots and the typical dispersion 

(k = 2) with the error bars. 

 

In Fig. 7 we see the values for baseline 231-215. The 

dispersion of the solutions with shorter computation 

blocks, especially for the one hour timespan, is 

unexpectedly high. However, the variation between the 

different solutions does agree well with the observed 

dispersion. The weighted average value gives a final value 

for the distance of 6019.4459 m. 

 

Figure 7: Baseline distance 231-215, values in m. The 

average values for each of the different time blocks are 

indicated with the blue dots and the typical dispersion 

(k = 2) with the error bars. 

 

In Fig. 8 we see the values for baseline 233-231. They 

agree well between the different solutions as well as with 

the observed dispersion. The weighted average value gives 

a final value for the distance of 6542.0130 m. 

 



Figure 8: Baseline distance 233-231, values in m. The 

average values for each of the different time blocks are 

indicated with the blue dots and the typical dispersion 

(k = 2) with the error bars. 

 

In Table 2 we give a summary of baseline distances and 

corresponding uncertainties, taking these as the average 

values for the 8-hour time blocks. 

 

Table 2: Baseline distances and uncertainties, values in m, 

k = 2. 

Baseline Distance utotal 

231-228 2235.6911 0.0007 

215-353 4753.1237 0.0006 

231-215 6019.4459 0.0008 

233-231 6542.0130 0.0008 

 

COMPARISON WITH KERN 

MEKOMETER ME5000 

The CERN Mekometer ME5000 with serial number 

357034 was used along with UPV meteorological sensors 

to measure the distance of the baselines with clean direct 

intervisibility: baselines 231-228 and 215-353. The 

instrument had its frequency calibrated at the UPV 

calibration laboratory, resulting in a virtually zero scale 

correction (-0.030  0.015 ppm, k = 2). After applying 

meteorological corrections and reduction to the pillar 

height references the resulting distances along with the 

experimental deviations where 2235.6934  0.0013 m (k = 

2) for the baseline 231-228 and 4753.1223  0.0017 m (k 

= 2) for the baseline 215-353. The values of these 

experimental deviations agree well with those expected 

from the nominal uncertainty of the EDM along with the 

respective uncertainties in meterorological parameters.  

The comparison with the values derived from the 

GBDM+ method yields a difference of -0.0023 m for the 

baseline 231-228 and 0.0014 m for baseline 215-353. This 

is a good agreement, the second value being well inside the 

combined uncertainty limit and the first just above the limit 

for k =2, especially considering the existing limiting 

factors: first, the refraction correction for the EDM 

distances was determined by using parameters measured 

only at the ends of each baseline, which is only considered 

reliable for distances less than 1 km; second, the EDM 

reflector was not calibrated and its offset was considered to 

be exactly zero, the CO2 content in Geneva at the time of 

the measurements was taken as the worldwide average in 

July (421 ppm), etc. 

COMPARISON WITH OTHER 

CAMPAIGNS AT CERN 

CERN has a long record of observations of their geodetic 

network. They have been made with different instruments, 

computing software and, unfortunately, sometimes referred 

to different or unclear altimetric references in the pillars, 

which add up to the possible long-time instability of the 

monuments, which can reach up to several mm [11]. We 

analyse here three distances that have a long observation 

record and compare their different values available with the 

determinations by GBDM+ and ME5000 in the 2022 

campaign. The results can be shown in Fig. 9, where the 

different y axes in the subplots have been shown with the 

same scale for a better comparison. 

 

Figure 9: Baseline distances 231-228, 215-353 and 

233-231 for different campaigns or registry times: 1 

CCS86, 2 CCS98, 3 CCS2000, 4 CCS2001, 5 

Geode2006, 6 Mekometer-2017, 7 TCRP1201-2017, 8 

Bernese-2017, 9 GravNet-2017, 10 IGN-2017, 11 

Geode2022, 12 GeoMetre_Mekometer-2022, 13 

GeoMetre_GBDM+-2022. 

Apart from one value in the database that has not been 

depicted –the case of the distance 231-228 in Geode 

database 2006, which is some 30 cm larger than the rest of 

the values for this distance– the different determinations of 

the different distances agree among them within 1 or 2 cm. 

CONCLUSIONS, LIMITATIONS AND 

FUTURE WORK 

The four baselines selected from the CERN geodetic 

network and continuously observed during 3 days have 

been processed by the GBDM+ approach without 

significant problems (despite the 8-hour data gap 

discovered in one station). The distance and corresponding 

uncertainty budget were obtained for each of the baselines. 

A few large dispersions and slight inconsistencies between 

the different results obtained for the 215-353 as well as the 

231-215 baselines were experienced, within an otherwise 

overall satisfactory solution for the case study. 

Some limitations still exist, namely: 

• In its current version (version 3), the CSRS-PPP 

service estimates ionospheric delays but does not 

distribute them to the users. The CSRS-PPP may 

possibly add this output in short as part of its 

forthcoming version 4 (Banville 2021, personal 



communication). For the moment, the double-

differenced ionospheric effect has been considered 

completely negligible with no uncertainty included in 

the uncertainty budget. 

• In its current version (version 3), the CSRS-PPP 

service truncates all input files to a sampling rate of 

30 s, so that no corrections and corresponding 

uncertainty values are available for shorter rates. This 

prevents a complete analysis of uncertainty at 

sampling rates shorter than 30 s, which is the sampling 

rate we have therefore selected for the current 

solution. 

• The sidereal filtering approach to determine a 

multipath model that provides a correction value 

along with an uncertainty is only possible for the GPS 

constellation due to the corresponding repeat periods 

of the different GNSS constellations. This prevents a 

complete analysis of uncertainty for satellites from 

constellations other than GPS, which is the only we 

have used for the current solution. 

• The possibility of eliminating double-difference 

equations with large uncertainties, or better yet, those 

whose uncertainties have a large impact on the 

resulting distance, as well as the resulting degree of 

improvement, still remains unexplored. 

 

The comparison with the distances obtained with the 

Kern Mekometer ME5000 provides results fairly 

consistent with the ones shown in the present report, thus 

confirming their validity. 
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