HighRR · BiWeekly-Seminar

Low Background MMCs for IAXO

Daniel Unger · 2nd November 2022

Axion & ALP Search

- Axion: possible solution to strong CP problem
- Axion-like particles (ALPs):
 - generic photon coupling like axions
 - very light
 - barely interacting
- ALPs could explain several observations, e.g.:
 - dark matter
 - stellar cooling anomalies
 - γ-ray transparency of the universe

Detection Methods

- Light-shining-through-a-wall: axions produced in the laboratory
- Haloscopes: axions as part of the dark matter halo of our galaxy
- Helioscopes: axions produced in the interior of the Sun

natural source of axions

Solar Axion Flux

Resolving the spectrum allows to extract axion properties and information about the Sun

Helioscopes

- Helioscopes search for axions from the Sun
- Axions would be converted to X-rays via their generic photon coupling

Detector Requirements

- Photon energy of roughly 100 eV 14.4 keV: X-ray detector
- Small coupling: high efficiency and low background, below 10^{-6} keV⁻¹cm⁻²s⁻¹
- Focal spot of X-ray optics: roughly **20 mm² active area**
- Rotating and tilting helioscope: stable long-term operation while moving

Additionally favored beyond discovery:

• Study axion spectrum: good energy resolution and low energy threshold

Micro-Calorimeters

Required for good energy resolution:

- Small volume at low temperature
- Very sensitive temperature sensor

Metallic Magnetic Calorimeter

- Cryogenic micro-calorimeter
- Paramagnetic temperature sensor
- Operated at around 20 mK
- Advantages for IAXO:
- Good energy resolution
- Large bandwidth with high linearity
- Low energy threshold

Two-Stage SQUID Readout

- SQUIDs: sensitive magnetometer
- Flux-locked-loop circuit to linearize
 SQUID voltage response
- Low noise and large bandwidth amplifier with small power dissipation

$$u_{\rm OUT} = -\frac{M_{\rm IN}}{M_{\rm FB}} R_{\rm FB} i_{\rm IN}$$

 $u_{\rm OUT} \propto i_{\rm IN}$

Dilution Refrigerator

- Continuous cooling to to a few mK
- Cooling provided by using a mixture of ³He and ⁴He
- MMCs and SQUIDs are mounted on the mixing chamber plate
- Ribbon cables connect the setup to room temperature electronics

First Setup for IAXO

- Based on a maXs30 detector
- Made out of radiopure materials

maXs30 detector:

- For X-ray spectroscopy up to 30 keV
- 64-pixel detector, 16 mm² active area

Detector Performance

- Operated at 15 mK in a dilution refrigerator
- Average energy resolution:

 $\Delta E_{\rm FWHM}$ = 7.2 eV at 5.9 keV

- 31 out of 32 operational channels
- Threshold below $100 \ \mathrm{eV}$
- Nonlinearity of 0.1~% at 5.9~keV

erator	$\Delta E_{\rm FWHM}$ / eV										
	A -	9.7	8.2	7.3	7.2	7.4	7.8	7.8	7.3		- 13.5
	в-	7.2	8.5	6.5	7.6	8.4	6.7	7.6	5.7		
	с-	7.4	7.6	7.1	7.1	6.5	7.5	6.3	14.2		- 12.0
	D -	8.2	6.9	8.1	7.7	6.9	7.7	7.4	14.2		- 10.5
	E -	6.7	7.3	6.7	7.4	6.9	6.9	6.4	6.4		- 9.0
	F -	7.4	7.2	7.0	6.7	6.3	7.8	7.4	broken		2.0
	G -	6.2	7.0	7.0	broken	6.6	7.4	7.3			- 7.5
	н-	6.7	scrato fronten	ch over d SQUID		7.0	6.9	6.8	7.4		- 6.0
JINST 16 (2021) P06	006	∎ 1	Г 2	н З	и 4	і 5	Г 6	Г 7	8		

Background Measurements

- Background reduction with a preliminary PTFE shield, covering a small solid angle
- Fluorescence lines damped with shield

Optimized PTFE Shield

- Enhanced screening factor
- 10 mm PTFE shield, many times the attenuation length of 0.7 mm at 10 keV
- Chimney opening of 5° for calibration

Result after two weeks of measurement:

- No further background reduction
- White background possibly from muons

Background Reduction

- Background between 1 and 10 keV: roughly $2 \cdot 10^{-4} \text{ keV}^{-1} \text{cm}^{-2} \text{s}^{-1}$
- Maintaining high efficiency: only 1~% of calibration events removed with applied cuts

Background Reduction:

- Additional cuts need to be investigated
- Active muon veto required
- Multiple passive shields
- Geant4 simulations to study background

Expected Muon Background

Rate of muons at sea level:

• 10,000 $m^{-2}min^{-1} = 0.017 cm^{-2}s^{-1}$

ECHo background from simulations:

- Muon induced white background: $0.7\cdot 10^{-4}~\text{keV}^{-1}\text{cm}^{-2}\text{s}^{-1}$
- Natural occurring radionuclides: $0.2\cdot 10^{-4}~\text{keV}^{-1}\text{cm}^{-2}\text{s}^{-1}$

Muon Veto: Requirements

- Close to detector: cryogenic muon veto
- Inner passive shielding: wafer size active area, vetoed volume around detector
- Presumably muon dominated background: very high efficiency, above 99.5 %
- 4π coverage: **replicable fabrication** of multiple detectors
- Looking for coincidences: **sufficient time resolution**
- Inside a helioscope: reliable long-term operation while moving

Can be used in coincidence with a room temperature muon veto around the cryostat

P2: Photon-Phonon Detector

- Developed for the AMoRE experiment
- Designed to seach for $0\nu\beta\beta$ in ¹⁰⁰Mo
- Measures heat and emitted light upon particle interaction in a scintillating crystal

Features a large photon detector:

- Silicon absorber with 12 cm²
- 41 distributed sensors over the absorber

P2 as a Muon Veto

• Mean energy loss in silicon for a minimum ionizing particle:

 3.9 MeV cm^{-1}

- For the 350 µm wafer (perpendicular trace): roughly 140 keV
- Expected energy resolution: below 100 eV

 \Rightarrow suitable preliminary muon veto

Muon Veto: Challenges

- Thermalisation:
 - Deposited energy propagates though silicon as ballistic phonons
 - Energy transfer from wafer to sensor limited by the Kapitza resistance
 - Distributed sensors and phonon collectors to improve energy transfer
 - Thermal link to the heat bath via silicon
- Fabrication:
 - Pickup coil needs to cover the wafer but the inductance should match to the SQUID
 - Structuring multiple stacked layers while maintaining a high critical current for superconductors
 - Etching to provide a thermally separated but sturdy active area

Cryostat Sidearm

- X-ray windows allow external calibrations
- Sidearm can be rotated from vertical to horizontal
- Allows connections to other vacuum systems

For the background analysis:

- Measuring with two muon veto systems: scintillating panels at room temperature and a cryogenic muon veto
- Comparing the background for a vertical and a horizontal mounted detector

maXs-IAXO

- New detector with 64 pixels
- Large active area of 100 mm²
 - Larger than focal area of X-ray optics
 - In-situ background measurements
- Expected energy resolution:

 $\Delta E_{\rm FWHM}$ = 11 eV

• Efficiency optimized for IAXO:

EBIT Preparation

- Current setup perfectly suitable for low-rate high-resolution EBIT measurements
- Preparations were finished, but breakdown of the EBIT
- Measurement with the repaired EBIT is planned for this winter

Outlook

- Novel cryogenic muon veto based on MMCs will be developed
- Background measurements with two muon veto systems and two detector orientations
- Further background reduction with passive shields later
- EBIT measurement as the first application of the setup prepared for IAXO