Rivet monthly dev meeting

9 March 2022
Recent activity / TODOs

- **Main activity is toward 3.1.6 release asap**
 - Review MRs
 - Lots of HERA analyses via Hannes J and Chris G
 - Upgrade DISLepton to derive from FinalState.
 - `.particles()` = outgoing lepton only
 - Now has remainingFinalState() for smarter projection chaining in initialize()
 - Tomek improved tab-completion to work with comma-sep lists (need caching?)
 - Python distutils removal; proper migration to e.g. custom+sysconfig → AB, AV
 - Still bugs in ALICE centrality calibration & RHICCommon? → CB, Leif
 - Add rivet-build environment sensitivity? from Christian Holm Christensen → AB
 - Merge warn on large numbers of subevents (Andy, idea from Andrii V)
 - WIP branch to introduce AH.merge(AH) to combine per-core AHs on an HPC
Path towards YODA2

- Plan for major version release around summer!
- Finalise translation of the usual YODA 1.9 objects into YODA2-style objects in time for Easter
 - Support all usual histogram/profile/scatter object types + new (continuously) binned Estimates
- Spend some time after Easter on (more validation and) syntactic sugaring of discretely binned axes
 - If this cannot be incorporated with reasonable turn-around (e.g. too complicated or other distractions get in the way), propose to postpone user-friendly support of discrete binning to a later YODA 2.1 release (autumn/winter?)
 - My current feeling is this won't be necessary, though …
- Outstanding ToDos:
 - Finalise Estimate implementation
 - Syntactic sugaring for `BinnedStorage<Estimate, BinnedAxis>` (+ discretely binned axes)
 - Reduce operations (e.g. for live-to-dead conversion)
 - Update Python API (😢)
 - Need new I/O reader and writer
 - Update docs with practical examples
 - Update build tests, tweak CI if necessary + validate, validate, validate, …
Major-release tasks

- In parallel: work toward v3.2.0 — baseline without YODA2
 - CPU-saving no-copy of the HepMC event, with API constness change: merged
 - Finish and merge thread-safety branch (important for Gambit — Tomek Procter)
 - Merge HDF5 analysis data, and live/dead-conversion branches → AB
 - Plotting merge (+ CHC patches) → Jamie, Yoran, AB, CB, etc.
 - Jet clustering of any ParticleBase → AB
 - Deprecation clean-out and enum rationalisation (started)
 - including “enumification” of the DISKinematics options arg :-/ → AB
 - Add early versions of automatic “object flattening”, and no-width scaling?
 We promised a discussion meeting on this… → AB to schedule
 - Primary particles definition / enforcement
 → mix of PIDs and decay time; Leif started tech discussion
Misc + AOB

- **Snowmass**
 - [MC technical](#), [MC community](#) and [preservation](#) papers/meetings: open to contribs

- **MCnet event-weights standard**
 - Proposal doc finished, circulated to MCnet management, [sign support here](#)

- **Events, schools, talk requests? + working meetings…**
 - UCL/SJTU Contur-project meeting on 2-3 March: thanks Jon & Tony!
 - UK SWIFT-HEP at Durham 23-24 March, Riveters will be there!
 - Chris to investigate a Rivet/Contur/reinterpretation/etc. workshop via IPPP
 - Other (+ non-UK) routes? Expt-specific workshops? [MCnet school](#)

- **Google Summer of Code / Docs**
 - GSoC projects submitted for YODA HDF5 and HepMC/LHE tools
 - GSoD: possibility to make Rivet+YODA docs much better for users? April 25

- **AOB?**
BACKUP
Big picture tasks (near duplicate from April & May)

- **Stats objects are our major technical bottleneck**
 - Integrate and extend new plotting system
 - YODA type-extension (build on Nick R GSoC 2020 work)
 - HDF analysis data and new YODA format
 - post-finalize() always “flatten” stats objects to “binned measurement” type
 - [finish multiweight-fill optimisation (Aditya GSoC 2020)]

- **Scaling**
 - Analysis distribution system... again
 - Ref-data and analysis data particularly problematic: decouple data from code??
 - HD consistency

- **Standardising:**
 - MCnet weight-name/structure proposal: productive meeting on May 21, lots of agreement, AB to update and recirculate proposal
 - [Event-record content: excessive size and physicality…]
Major (stats) work plans

- **“Flattening”: convert finalize output to inert objects (scatters/binnedmeas)**
 - Final objects really will mean “what was plotted/listed in the paper”
 - Allow eager conversion to solve “no-bin-width issue”
 - Best that we wait for binned measurement YODA2 types: no more scatters!

- **HDF5 analysis data machinery (Holger) *Status?***
 - Also interested in HepMC and YODA HDF5 formats
 - Holger to ping CMS, prototype interface

- **Plotting (Christian B et al)**
 - Plan: generate Python MPL scripts *without* TeX, .plot styles → YAML
 - Rivet labels tested: MathText fails due to missing std symbols. Can we extend?
 - Stalled for a while… restarting? Possible student help from David Grellscheid
 - Christian to prototype the Python-script generation
 - Chris to extract weight-handling logic from rivet-cmphistos
Performance in Rivet and YODA (Aditya Kumar, AB)

- **Profiling revealed bottlenecks: thanks Aditya!**
 - HepMC ASCII I/O (obviously) — taken out of tests by event-reuse
 - GenEvent copying — for sanitising, but hardly used: removed from Rivet.
 Could/should generators write smaller “essential” events by default?
 Awkwardness: we still normalise GenEvent units… so not quite analysing a const GenEvent.
 But can’t justify an expensive copy for *unit conversion*…
 - PID functions — sped up charge lookups by special-cases. Marginal gain
 - Multiweight calls to histo fill() *very* expensive: ~40-50% CPU!
 100+ consecutive fills with same x: tried caching in YODA but no benefit:
 cache-check costs the same as linear bin lookup! *Maybe cache in Rivet?*

- **Thread-safety.** “*Just store a ProjectionHandler in AnalysisHandler: easy!*”…?
 - But then who do Projection constructors (recursively) register their contained projections with, before they themselves have been bound to a PH?
 - “Declare queue” implemented: not yet working (thx, unique_ptr), but should do "What should the Projection ownership be?!"
YODA generalised datatypes (Nick Rozinsky, LC, AB)

- Long-understood limitations of YODA types and design
 - Overreach in attempted non-factorisable binnings: composed 1D axes are fine
 - Complexity/mess in 2D overflows: need “infinity binning”
 - Need for binned “dead” data objects… or any type, actually
 - Want programmatic access to axis number and global/local bin indexing
 - Want labelled/discrete binnings as well as continuous
 - Code duplication, particularly in Cython interface building

- Major YODA redesign using modern C++ magic. Thanks Nick!
 - E.g. Histo1D → wrapper of a BinnedStorage<CAxis, Dbn<1>> + sugar
 - + arbitrary mixtures, e.g. 3D binnings of doubles, discretely labelled counters, …
 - Adaptors used to map fill/set behaviours. Can do the same for I/O read/write?

- Path to a YODA2 release:
 - Needs I/O adaptors and user-facing refinements. Tie in with HDF5 format?