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“Little bang”: plasma of quarks and gluons

- T ∼ 200 − 400 MeV
- perturbative at high energies
- electric AND magnetic screening

Relativistic Heavy Ion Collider Large Hadron Collider

↑
1 km

↓ v = 0.99995 · c

since 2000-

Au+Au:
√

s = 200 GeV/nucleon

already running!

Pb+Pb:
√

s = 2700 GeV/nucl

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 2



RHIC collisions look largely thermalized → should be able to

measure equation of state and viscosity

e.g., efficient conversion of spatial eccentricity to momentum anisotropy

→ “elliptic flow”

ε ≡ 〈x2−y2〉
〈x2+y2〉

v2 ≡ 〈p2x−p
2
y〉

〈p2x+p
2
y〉

≡ 〈cos 2φp〉

large energy loss, even for heavy quarks

RAA =
measured yield

expected yield for dilute system

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 3



I. Hydro paradigm and particles

Identified particle observables are crucial

- help pin down initial conditions

- hold the key to equation of state
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Hydrodynamics
describes systems near local equilibrium, in terms of macroscopic variables

e(x), p(x), nB(x) - energy density, pressure, baryon density

uµ(x) ≡ γ(v)(1, ~v(x)) - flow velocity

conservation laws: ∂µT
µν(x) = 0, ∂µN

µ
B(x) = 0

Tµν: energy-momentum tensor, Nµ
B: baryon current

medium given through equation of state p(e, nB)

ideal ≡ local equilibrium TµνLR = diag(e, p, p, p), Nµ
B,LR = (nB, 0)

nonideal ≡ small deviations from local equilibrium → dissipation

Local Rest frame (comoving frame)ւ
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∼ 2000-01: Ideal hydro
Au+Au @ RHIC: spectral shapes work quite well Kolb & Heinz, nucl-th/0305084
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Elliptic flow (v2)

spatial anisotropy → final azimuthal momentum anisotropy

ε ≡ 〈x2−y2〉
〈x2+y2〉 → v2 ≡ 〈p2

x−p2
y〉

〈p2
x+p2

y〉

- measure of early pressure gradients

- sensitive to interaction strength (degree of thermalization)

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 7



also seen in ultra-cold atomic systems

dN(t)/dx dy dN(t)/dx dy

↔
10−4m t ∼ 10−3s

droplet of 6Li

T ∼ 10−6 K

n ∼ 1019/m3

unitarity limit

(Feshbach resonance)

σ(k) = 4π/k2

O’Hara et al, Science 298 (’03)
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∼ 2000-01: Ideal hydro
minimum-bias Au+Au at RHIC Kolb, Heinz, Huovinen et al (’01), nucl-th/0305084
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Two recent refinements:

- realistic equation of state

- QGP viscosity
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QCD equation of state (µB = 0)

QCD on a space-time lattice - Z =
R

DψDψ̄DAe−S
QCD
E

A. Bazavov et al, PRD80 (’09)
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Ideal hydro + realistic EOS
serious eyesore for hydro paradigm: realistic EOS gives same as hadron gas?!

Huovinen, NPA761, 296

(’05)

Q: bag model

qp: lattice fit
(Tc = 170 MeV)

H: hadron gas

T: interpolated ε(T )
between hadron gas
and ε ∝ T 4 plasma
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Hope: dissipation could help. 2005 PHENIX White Paper NPA757, 184 (’05): for
best agreement, must couple hydro to late-stage hadronic transport.
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a contender paradigm (waiting for independent confirmation)

quark-gluon transport with elastic 2 → 2 AND radiative 3 ↔ 2

Xu & Greiner, (’08)
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Viscous QGP(?)
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(Shear) viscosity

1687 - I. Newton (Principia)

Txy ≡
Fx
A

= −η
∂ux
∂y

η: shear viscosity
reduces velocity gradients

⇒ dissipation

1985 - Heisenberg ∆E · ∆t + kinetic theory: η/s ≥ h̄/15kB
Gyulassy & Danielewicz, PRD 31 (’85)

2004 - string theory AdS/CFT: η/s ≥ 1/4π·h̄/kB
Policastro, Son, Starinets, PRL87 (’02); Kovtun, Son, Starinets, PRL94 (’05)

revised to η/s ≥ 4h̄/(25π) Brigante et al, PRL101 (’08)

or even lower Camanho et al, arXiv:1010.1682

“minimal viscosity” or not - need to test it experimentally
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Viscosity in QCD - not known
perturbation theory (T ≫ Tc): large η/s > O(1), small ζ/s ∼ 0.02α2

s ∼ 0
Arnold, Moore, Yaffe, JHEP 0305 (’03); Arnold, Dogan, Moore, PRD74 (’06)

lattice QCD estimates: shear Nakamura & Sakai, NPA774 (’06) bulk Meyer, PRD76 (’07)
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viscosities at RHIC and LHC not known but could indeed be small

Schafer, PRA 76 (’07) Mueller et al, PRL103 (’09)

cold atoms

∼ 5 × 1

4π
∼ 3 × 1

4π
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What viscosity does
entropy production:

∂µS
µ =

Π2

ζT
− qµqµ

κT 2
+

πµνπµν
2ηT

> 0

sound damping:

ω(k) = csk − i

2
k2Γs + O(k3) Γs ≡

4
3η + ζ

e + p

sound attenuation length

slower cooling:

dE = −pdV + TdS (dS > 0)

anisotropic pressure: e.g., longitudinal expansion, with shear only

Tµν = diag(e, p+πL/2, p + πL/2, p−πL)
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Dissipative frameworks

• causal relativistic hydrodynamics Israel, Stewart; ... Muronga, Rischke; Teaney et al; Romatschke

et al; Heinz et al, DM & Huovinen ... Niemi et al... Ván et al..

∂µT
µν = 0 (µB → 0)

Tµν = (e + p)uµuν − pgµν + πµν − Π∆µν

π̇µν = Fµν(e, u, π,Π) , Π̇ = G(e, u, π,Π)

e.g. Israel-Stewart theory

• covariant transport Israel, de Groot,... Zhang, Gyulassy, DM, Pratt, Xu, Greiner...

pµ∂µf = C2→2[f ] + C2↔3[f ] + · · ·

fully causal and stable

near hydrodynamic limit, transport coefficients and relaxation times:

η ≈ 1.2T/σtr, τπ ≈ 1.2λtr
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when viscosity is small, transport becomes viscous hydro

Au+Au at RHIC, b = 8 fm Huovinen & DM (’08)

pressure in the core, r⊥ < 1 fm

η/s ≈ 1/(4π) (σ ∝ τ2/3)

elliptic flow vs pT

• σ = const ∼ 47mb
• η/s ≈ 1/(4π), i.e., σ ∝ τ2/3
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Shear viscosity from RHIC data
Romatschke & Luzum, PRC78 (’08): Au+Au data vs 2+1D viscous hydrodynamics
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Romatschke & Romatschke, PRL99 (’07)
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ALSO - ballpark agreement with estimates based on kinetic theory, transverse
momentum fluctuations, heavy-quark diffusion,... Zajc @ QM2009
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II. From viscous fluid to particles

For viscous hydro calculations, identified

particle observables are challenging

(yet unsolved problem)
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Hydro → particles

heavy-ion applications in the end must match hydrodynamics to a particle
description

• in local equilibrium - one-to-one maping

TµνLR = diag(e, p, p, p) ⇔ feq,i = gi
(2π)3

e−p
µ
i uµ/T

• near local equilibrium - one-to-many

Tµν = Tµνideal + δTµν ⇐ fi = feq,i + δfi

corrections crucially affect basic observables - spectra, elliptic flow, ...

unavoidable whether we do pure hydro or hydro + transport

a separate issue: Cooper-Frye freezeout (“t 6= const”)
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Separate issue: Cooper-Frye
Cooper & Frye, PRD10 (’74)

fluid to a gas on a 3D hypersurface (e.g., T (x) = Tfo)

E
dN

d3p
= pµdσµ(x) fgas(T (x), µ(x), u(x), ~p)

dσµ: hypersurface normal at x

conversion at constant time is OK: dσµ = d3x (1,~0)

⇒ dN = fgas(T (x), µ(x), u(x), ~p) d3x d3p

but for arbitrary hypersurface, negative yield when pµdσµ(x) < 0
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TWO effects: - dissipative corrections to hydro fields uµ, T, n
- dissipative corrections to thermal distributions f → f0 + δf

Huovinen & DM (’08) η/s ≈ 1/(4π) (σ ∝ τ2/3)

Grad:

δf = f0

[

1 +
pµpνπµν

8nT 6

]

most of the v2 reduction comes from phase space correction δf
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Teaney et al, PRC81 (’10)
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for one-component massless gas, with viscous shear only

δf ≡ feq × C(χ) πµν
pµpν
T 2

χ(
p

T
)

from Grad’s ansatz: χ ≡ 1

this is a starting point in deriving IS hydro from kinetic theory

from linear response: χ(x) ∼ xα with −1 <∼ α <∼ 0 Dusling, Teaney, Moore, (’09)

but δf blows up at large momenta ⇒ approximation breaks down

check these from nonequilibrium transport...
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Test in 0+1D Bjorken → f = f(pT , ξ, τ), where ξ ≡ η − y

i) compute f from full nonequilibrium transport

ii) from f , determine Tµν and δf

iii) estimate δf from Tµν alone via various ansatzes for χ(p/T ) (e.g. Grad’s)

δf ∝ feq
πL
16p

(pT
T

)α+2

[ch(2ξ) − 2]

iv) compare δfestimated with δfreal

For simplicity, compare integrated quantities dN(τ)/dp2
Tdy|y=0 and dN(τ)/dξ

drive calculation by inverse Knudsen number K0 = τ/λtr ∝ (η/s)−1
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DM (’09):

spectra in 0+1D Bjorken scenario at τ = 2τ0 and 5τ0

for η/s ∼ 0.1, local equilibrium initconds πµν(τ0) = 0
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Grad ansatz (α = 0) works surprisingly well - on a log plot at least
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ratio - transport spectra / Grad approximation, η/s ∼ 0.1

DM (’09):
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ratio - transport spectra / Grad approximation, η/s ∼ 0.3

DM (’09):
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for higher viscosity, accuracy worsens - should affect other observables also
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highlight viscous correction: spectra / ideal spectra

η/s ≈ 0.1 η/s ≈ 0.3
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for higher viscosity, 20 − 40% error in viscous correction at low pT
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Grad ansatz not as good for rapidity ξ ≡ η − y correlation

dN/dξ

dNideal/dξ
distributions relative to IDEAL hydro, η/s ∼ 0.1 DM (’09-’10)
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Interplay with pQCD jets

hydro accuracy is further limited by pQCD power-law tails

parton dN/dp2
T dy - central Au + Au @ RHIC
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for jets: pQCD cross sections, for bulk: strong interactions (η/s ≈ 0.1)
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spectra vs hydro approximation DM (’09)-(’10)
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ratio - transport spectra / Grad approximation
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jets spoil accuracy of Grad ansatz for pT >∼ 1.5 GeV
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Hydro → gas mixture

must be tackled to address IDENTIFIED particle data

(!) from ONE set of viscous fields we need to obtain δfi for EVERY species

commonly used “democratic” prescription:

δfi ≡ feqi × πµν

2(e + p)

pµ,ipν,i
T 2

(i = π, K, p, Λ, ...)

ignores equilibration dynamics

Ki ∼
τ

λi
∼ τ

∑

j

njσij

key drivers: relative Knudsen numbers between species Kj/Ki
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Democratic vs 2 → 2 transport

2-component 0+1D Bjorken test DM (’10) - A equilibrates twice as fast as B

δfi = Ci (pT/T )2(sh2y − 1/2)feqi πL,i/pi = 8Ci
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“democratic” ansatz misses viscous effects by ∼ 20 − 25%
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pressure evolution
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VERY slightly more pressure work for species “A”
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transport spectra / “democratic” Grad vs transport / dynamical Grad

DM (’10)
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highlight dissipative correction: spectra for A / ideal ansatz
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20-100% error in dissipative correction, depending on pT and time
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So... we must obtain dynamically determined partial shear

stresses πµνi - BEFORE we can convert to particles

⇒ will a one-component viscous hydro be sufficient?

usual derivation of hydro from kinetic theory based on Grad ansatz gives
coupled set of equations between πµνi
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Denicol @ CATHIE-TECHQM, Dec 2009

MORE variables!

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 46



some hope: transport suggests universal sharing, at later times DM (’10)

δfi = Ci (pT/T )2(sh2y − 1/2)feqi πL,i/pi = 8Ci
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 1.25

 1.5

 1.75

 1  2  3  4  5  6  7  8  9  10

C
B

 / 
C

A

τ / τ0

democratic

KA / KB = 4.4 / 2.2
 3.8 / 1.9
 2.2 / 1.1
 
 6 / 3.8
 4.2 / 2.8
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III. Summary

• Theory should strive to address identified particle data. In the hydro
paradigm, this is key in order to constrain the equation of state and initial
conditions.

• Converting a non-ideal fluid to particles is nontrivial, independently of
Cooper-Frye freezeout assumptions.

Comparison with kinetic theory indicates that Grad’s quadratic ansatz is
remarkably accurate (1-2%) up to pT /T ∼ 6, at least with 2 → 2
interactions and for small shear viscosities η/s ≈ 0.1.

In the multicomponent case, kinetic theory indicates that per-species
dissipative corrections are driven by the relative opacities. The commonly
assumed “democratic” sharing in viscous hydro calculations is unrealistic.

• Some open questions:

- whether we need to extend hydrodynamics with per-species viscous fields

- accuracy of linear response

- any simple shortcut to the end result
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unique connections between different fields
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Backup slides
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“Bag” equation of state

EOS Q: simplified 1st-order phase transition parameterization

0 1 2 3 4
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n=0 fm−3

EOS I

EOS Q

EOS H

combines hadron resonance gas (EOS H) & plasma (EOS 1)
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Viscous hydrodynamics

Navier-Stokes: corrections linear in gradients [Landau]

T
µν
NS = T

µν
ideal + η(∇

µ
u
ν
+ ∇

ν
u
µ
−

2

3
∆
µν
∂
α
uα) + ζ∆

µν
∂
α
uα

N
ν
NS = N

ν
ideal + κ

„

n

ε+ p

«2

∇
ν

„

µ

T

«

[∆µν≡gµν−uµuν, ∇ν≡∆µν∂µ]

η, ζ: shear and bulk viscosity; κ: heat conductivity

unfortunately NS hydro is unstable and acausal
Müller (’76), Israel & Stewart (’79), Hiscock & Lindblom, PRD31 (’85) ...

causal 2nd-order hydro: dynamical corrections

T
µν

≡ T
µν
ideal + π

µν
− Π∆

µν
, N

µ
≡ N

µ
ideal −

n

e+ p
q
µ

relaxation eqns for bulk pressure Π, shear stress πµν, heatflow qµ

e.g. Israel-Stewart theory, Öttinger-Grmela, conformal hydro, ...

Israel & Stewart, Ann.Phys 110&118; Öttinger & Grmela, PRE 56&57; Baier et al, JHEP04 (’08)
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Israel-Stewart theory - complete set of equations of motion

DΠ = − 1

τΠ
(Π + ζ∇µu

µ) (1)

−1

2
Π

(

∇µu
µ + D ln

β0

T

)

+
α0

β0
∂µq

µ − a′
0

β0
qµDuµ

Dqµ = − 1

τq

[

qµ + κq
T 2n

ε + p
∇µ

(µ

T

)

]

− uµqνDuν (2)

−1

2
qµ

(

∇λu
λ + D ln

β1

T

)

− ωµλqλ

−α0

β1
∇µΠ +

α1

β1
(∂λπ

λµ + uµπλν∂λuν) +
a0

β1
ΠDuµ − a1

β1
πλµDuλ

Dπµν = − 1

τπ

(

πµν − 2η∇〈µuν〉
)

− (πλµuν + πλνuµ)Duλ (3)

−1

2
πµν

(

∇λu
λ + D ln

β2

T

)

− 2π
〈µ
λ ων〉λ

−α1

β2
∇〈µqν〉 +

a′
1

β2
q〈µDuν〉 .

where A〈µν〉 ≡ 1
2∆

µα∆νβ(Aαβ+Aβα)−
1
3∆

µν∆αβA
αβ, ωµν ≡ 1

2∆
µα∆νβ(∂βuα−∂αuβ)
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Why does ideal hydrodynamics work in everyday life??

Ideal hydro is applicable when relative viscous corrections are small
δTµνviscous/Tµνideal ≪ 1

I.e., based on Navier-Stokes we need (with shear only)

η∇iuj

e + p
∼ η∇iuj

T s
∼ η

s
× v

LT
≪ 1

where L is the shortest length scale. In heavy ion physics,

v

LT
∼ 1

τT
∼ 1 → need

η

s
≪ 1

In everyday problems v/(LT ) ≫ 1, compensating a large η/s.

What we are after is not ideal hydro behavior but systems where the viscosity
is near its quantum (uncertainty) limit.
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Realistically, η/s 6= const

interpolate between wQGP, sQGP, hadron gas + use τπ ≈ η/p

Denicol et al, JPG37 (’10)

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 55



same elliptic flow as for low η/s ≈ 0.12(!)

Denicol et al, JPG37 (’10)

⇒ disentangling η and τπ will likely need good theory input

D. Molnar, Zimányi School, Nov 29 - Dec 3, 2010 56



Validity of hydrodynamics
test against transport: IS hydro accurate for η/s ≈ 1/4π DM & Huovinen, JPG35(’08)

relevant condition: high-enough inverse Knudsen number Huovinen & DM, PRC79

(’08)
K0 ≡ τ

λtr
=

τexp
τscatt

≈ 6τexp
5τπ

> ∼ 2 − 3

in terms of shear viscosity η

s
∼ 2.6

4πK0

<∼ 2 × 1

4π
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Validity of Israel-Stewart hydro (0+1D Bjorken)
Huovinen & DM, PRC79pressure anisotropy Tzz/Txx

Navier-Stokes
transport
IS hydro
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ideal hydro
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Connection to viscosity

K0 ≈ T0τ0

5

s0

ηs,0
≈ 12.8 ×

(

T0

1 GeV

)

( τ0

1 fm

)

(

1/(4π)

η0/s0

)

For typical RHIC hydro initconds T0τ0 ∼ 1, therefore

K0 >∼ 2 − 3 ⇒ η

s
<∼

1 − 2

4π
(4)

I.e., shear viscosity cannot be many times more than the conjectured bound,
for IS hydro to be applicable.

When IS hydro is accurate, dissipative corrections to pressure and entropy
do not exceed 20% significantly (a necessary condition). This holds for a
wide range [0.476, 1.697] of initial pressure anisotropies.
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(!) close to a noninteracting “resonance gas” at T <∼ 160 − 180 MeV

fi(p) =
gi

(2π)3
1

exp[Ei(p) − µi]/T ± 1
Huovinen & Petreczky, NPA837 (’10)

equation of state strangeness fluctuations
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important for late-stage dynamics (hadron transport)
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QGPHRG

bulk viscosity and relaxation time  

Bulk viscosity:  

  Relaxation times:             also peaks near Tc,  ζτ ~Π

 N-S initialization:                        )(0 u⋅∂−=Π ζ

Π

s/ζviscous hydro breaks down  (               ) for larger    0<Π+p

viscous hydro is only valid  with small                  small bulk viscous effects on V2 

large       near  Tc             keeps large negative value of      in phase transition region Πτ

this plays an important role for bulk viscous dynamics

s/ζ

Song & Heinz (’09)
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Uncertainties from bulk viscosity 

fm/c120)/( ⋅= sζτ π

1=C
3.1=C

1=C
100=C

N-S initialization Zero initialization

-with a critical slowing down      ,  effects from bulk viscosity effects are much 
smaller than from shear viscosity  

Πτ

bulk viscosity influences V2  ~5%  (N-S initial.)     <4%  (zero initial.) 

Song & Heinz, 0909

s/ηuncertainties to         ~20%  (N-S initial.)    <15%  (zero initial.)    

   

fm/c120)/( ⋅= sζτ π

s/ζ s/ζ

Song Heinz (’09)
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