[Introduction](#page-2-0) [Field theory solution](#page-19-0) [Results](#page-27-0) [Conclusion](#page-48-0)

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 $2Q$

画

Gibbs paradox and the Hadron Resonance Gas

Antal Jakovác

BME Technical University Budapest

Zimányi 2010 Winter School, KFKI, 30 November 2010.

[Field theory solution](#page-19-0) Theory Conclusion [Results](#page-27-0) [Conclusion](#page-48-0) Conclusion 0000000

0000000000000

K ロ ト K 伊 ト K ミ

つへへ

Outlines

[Introduction](#page-2-0)

- [Equation of State in QCD](#page-3-0)
- [Gibbs paradox](#page-11-0)
- **o** [Interactions](#page-15-0)

2 [Field theory solution](#page-19-0)

- [Generalized quadratic theory](#page-20-0)
- **[Energy momentum tensor](#page-23-0)**
- 3 [Results](#page-27-0)
	- [Single Dirac-delta](#page-28-0)
	- **•** [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**

Outlines

[Introduction](#page-2-0)

- [Equation of State in QCD](#page-3-0)
- [Gibbs paradox](#page-11-0)
- **o** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- **•** [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- [Single Dirac-delta](#page-28-0)
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

K ロ ⊁ K 伊 ⊁ K

つへへ

1 [Introduction](#page-2-0)

- [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- [Single Dirac-delta](#page-28-0)
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

Zimányi 2010 Winter School, KFKI, 30 November 2010.

K ロ ⊁ K 伊 ⊁ K

つへへ

EoS comes from $Z = e^{-\beta F} = \text{Tr} e^{-\beta H}$

- exact computation: MC simulations measurement; we have to understand the result!
- most naive approach: treat plasma as gas of free particles
	- high T: free quarks and gluons \Rightarrow SB limit
	- low T: hadronic degrees of freedom \Rightarrow ε and p at low T.

(F. Karsch, K. Redlich, A. Tawfik, Eur.Phys.J. C29 (2003) 549-556.)

 \Rightarrow Seems to work surprisingly well!

K ロ ⊁ K 伊 ⊁ K

EoS comes from $Z = e^{-\beta F} = \text{Tr} e^{-\beta H}$

- exact computation: MC simulations measurement; we have to understand the result!
- most naive approach: treat plasma as gas of free particles
	- high T: free quarks and gluons \Rightarrow SB limit
	- low T: hadronic degrees of freedom \Rightarrow ε and p at low T.

イロン イ押ン イヨン イヨン・ヨ

 ORO

(C. Bernard et al. [MILC], Phys. Rev. D 71, 034504 (2005)) (P. Huovinen, P. Petreczky, Nucl.Phys.A837:26-53,2010) Baryon number fluctuations: solid line: naive HRG dashed blue lines: hadron masses on lattice; mass $cut = 1.8$ GeV resp. 2.5 GeV.

140 160 180 200 220 240

T [MeV]

p4 asqtad

ځغه 0
140 0.05 0.1 0.15 0.2 0.25

> C. Ratti, K.K. Szabo, arXiv:1007.2580v2) Trace anomaly $I = \varepsilon - 3p$; HRG is not too accurate

> (Sz. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg,

T [MeV]

0.15

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, K.K. Szabo, arXiv:1007.2580v2) energy density: SB limit is not reached at \approx 5T_c.

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 $2Q$

- Recent MC data: not all quantities can be reproduced well
- transport: infinite lifetime \Rightarrow ballistic regime
	- \Rightarrow transport coefficients are infinite!
- in energy denstity: too large contribution after $\approx 1 1.5T_c$!
	- \bullet HRG degrees of freedom are not there at hight T ? crossover!
	- more correct: HGR degrees of freedom are resonances with finite (and T-dependent) lifetime

 \Rightarrow a particle with too short lifetime cannot be part of the statistical ensamble

イロト イ押 トイヨ トイヨ トー

ഗാഹ

we have to consider the complete spectrum!

- Recent MC data: not all quantities can be reproduced well
- transport: infinite lifetime \Rightarrow ballistic regime
	- \Rightarrow transport coefficients are infinite!
- in energy denstity: too large contribution after $\approx 1 1.5T_c$!
	- HRG degrees of freedom are not there at hight T ? crossover!
	- more correct: HGR degrees of freedom are resonances with finite (and T-dependent) lifetime

 \Rightarrow a particle with too short lifetime cannot be part of the statistical ensamble

 \Rightarrow we have to consider the complete spectrum!

conceptional problem statistical physics cannot treat bound state models well! cf. H-atom problem $A \oplus A$ and $A \oplus A$ 290

Zimányi 2010 Winter School, KFKI, 30 November 2010.

HRG describes bound states of quarks \sim H-atom problem of QCD But already the H-atom problem is ill-defined in statistical physics! Coulomb problem: $E_n = -E_0/n^2$ is the energy level of nth energy level, degeneracy is n^2 :

$$
Z=\sum_n n^2e^{-\beta E_n}>\sum_n n^2\to\infty.
$$

Cannot be resolved using a regularization. Eg. take into account states with $n < N$, then the energy expectation value

$$
0<-\langle E\rangle=-\frac{\sum_{n}^{N}n^{2}E_{n}e^{-\beta E_{n}}}{\sum_{n}^{N}n^{2}e^{-\beta E_{n}}}<\frac{Ne^{\beta E_{0}}}{N^{3}}\stackrel{N\rightarrow\infty}{\longrightarrow}0.
$$

 \Rightarrow at all T, all H-atoms should be at highly excited state !?

 4 O \rightarrow 4 \overline{P} \rightarrow 4 \overline{E} \rightarrow 4

 -990

[Introduction](#page-2-0)

Outlines

- **•** [Equation of State in QCD](#page-3-0)
- [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- **[Single Dirac-delta](#page-28-0)**
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

K ロ ⊁ K 伊 ⊁ K

つへへ

Not all energy levels are independent!

Gibbs' argumentation: take a classical ideal gas with N independent particles:

 $Z_N = V^N Z_1^N \Rightarrow F = -NT(\ln Z_1 + \ln V) \Rightarrow$ not extensive!

Solution: particles states that differ only in the value of momenta are indistinguishable:

 $Z_N = \frac{V^N Z_1^N}{N!}$ \Rightarrow $F = -NT(\ln Z_1 + \ln \frac{V}{N})$ \Rightarrow extensive!

A degree of freedom (DoF): a bunch of indistinguishable states.

Appears in physical quantities: eg. SB limit $\varepsilon = N_{dof} \frac{\pi^2 T^2}{30}$.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 9 Q Q

A new problem: what are then those states which are indistinguishable? what are the DoF?

- **•** for sure different DoF: states with different internal quantum numbers (different charges)
- **•** for sure same DoF: states which differ only in their momenta
- states with same charge, but different energy?? eg. in case of 1s and 2s bound states.

Gibbs takes them different – then states with mass m and $m + dm$ are 2 DoF even in $dm \rightarrow 0^+$, but at $dm = 0$ is 1 DoF

 \Rightarrow nonanalytic behaviour in dm.

K ロ X K @ X K 할 X K 할 X (할 X) 9 Q Q

Quantify: spectral function \sim density of states $\varrho(x) = \langle [A(x),A(0)] \rangle \rightarrow \varrho(\omega > 0) = \sum_{n} 2\pi \delta(\omega - \mathcal{E}_n) |\langle n|A|0\rangle|^2$ \Rightarrow energy levels appear directly

 \Rightarrow N_{dof} =number of Dirac-deltas in ρ

• normalization is irrelevant

$$
\bullet \ \varrho \quad \Rightarrow \quad N_{dof} \colon \text{nonlinear relation}
$$

K ロ ト K 何 ト K ヨ ト

つへへ

Outlines

[Introduction](#page-2-0)

- **[Equation of State in QCD](#page-3-0)**
- **•** [Gibbs paradox](#page-11-0)

o [Interactions](#page-15-0)

- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- **[Single Dirac-delta](#page-28-0)**
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

K ロ ⊁ K 伊 ⊁ K

つへへ

In all real matter the energy levels are not sharp: broadening because of finite T , finite lifetime, or zero mass excitations. In finite volume: lot of energy levels: in ρ lot of Dirac-deltas


```
∞ DoF??
     ا ا.
NO: these are multiparticle states. . .
     ⇓
only 1 DoF
```
BUT: 1s vs. 2s in H-atom: particle content is the same, only the electromagnetic field is in different state, which is a photon coherent multiparticle state.

[Field theory solution](#page-19-0) Theory is results [Conclusion](#page-48-0)
 00000000 Conclusion
 00000000000000

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ …

 \Rightarrow

 299

Interactions

overlapping states

Zimányi 2010 Winter School, KFKI, 30 November 2010.

[Introduction](#page-2-0) [Field theory solution](#page-19-0) [Results](#page-27-0) [Conclusion](#page-48-0)

Interactions

overlapping states

Zimányi 2010 Winter School, KFKI, 30 November 2010.

[Introduction](#page-2-0) [Field theory solution](#page-19-0) [Results](#page-27-0) [Conclusion](#page-48-0)

K ロ ト イ 伊 ト イ ヨ

つくい

Outlines

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)

2 [Field theory solution](#page-19-0)

- [Generalized quadratic theory](#page-20-0)
- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- [Single Dirac-delta](#page-28-0)
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

[Introduction](#page-2-0)

- **[Equation of State in QCD](#page-3-0)**
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)

2 [Field theory solution](#page-19-0)

• [Generalized quadratic theory](#page-20-0)

- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- **[Single Dirac-delta](#page-28-0)**
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

K ロ ⊁ K 伊 ⊁ K

つへへ

Our goal: contruct the statistical theory of finite lifetime resonances

The drawback of QM statistical treatment: fix the DoF beforehand, and order different wave functions to different DoF. But states with the same quantum numbers can interfere, mix with each other \Rightarrow we should treat them with the same wave function

Construct a quadratic field theory which is able to reproduce the observable spectral functions with a single field.

⇓

Zimányi 2010 Winter School, KFKI, 30 November 2010.

 QQQ

 $\mathcal{L} = \frac{1}{2}$ $\frac{1}{2}\Phi(x)$ K(i∂) $\Phi(x)$.

The corresponding retarded propagator

$$
G_R(p) = \frac{1}{\mathcal{K}(p_0 + i\varepsilon, \mathbf{p})}
$$

Spectral function:

$$
\varrho(p) = -2 \operatorname{Im} G_R(p) \quad \Leftrightarrow \quad G_R(p) = \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, \mathbf{p})}{p_0 - \omega + i\varepsilon}.
$$

 K ⇔ ρ relation

- nonlocal in time \Rightarrow no canonical formalism, no imaginary time formalism!
- causal: a theory is causal if $\rho(x) = 0$ for space-like 4-vectors. Since here we reproduce a given causal spectral function
	- \Rightarrow gives a causal theory

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) X 9 Q Q

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)

2 [Field theory solution](#page-19-0)

- **•** [Generalized quadratic theory](#page-20-0)
- **•** [Energy momentum tensor](#page-23-0)
- **[Results](#page-27-0)**
	- **[Single Dirac-delta](#page-28-0)**
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

K ロ ⊁ K 伊 ⊁ K

œ

つへへ

This system is spacetime translation invariant ⇒ ∃ Noether currents (energy momentum tensor)

 $\hat{\tau}_{\mu\nu}(k) = \frac{1}{2}$ $\int d^4p$ $\frac{d^4p}{(2\pi)^4}\, \Phi(k-p) {\cal D}_{\mu\nu}(p) \Phi(p), \qquad D_{\mu\nu}(p) = p_\mu \frac{\partial {\cal K}}{\partial p^\nu}$ $\frac{\partial \Omega}{\partial p^{\nu}}-g_{\mu\nu}\mathcal{K}$ In case of rel. invariance $\hat{\tau}_{\mu\nu}$ is symmetric.

expectation value: $\langle \Phi(k-p)\Phi(p)\rangle = (2\pi)^4\delta(k)$ i $G_<(p)$ $\Rightarrow \quad \left\langle \hat{\tau}_{\mu\nu}(\mathsf{x})\right\rangle =\tau_{\mu\nu}$ position independent.

- KMS relation: $\int d^3\mathbf{x}\,\hat{T}_{00}=\hat{H}$ conserved charge \equiv generator of time translations $\quad \Rightarrow \quad e^{-\beta \hat{H}}$ time translation by $-i\beta$ \Rightarrow KMS relation is still valid.
- renormalization: subtract $T = 0$ value now: assume spectral function is temperature independent.

K ロ X K @ X K 할 X K 할 X (할 X) 9 Q Q

Finally

$$
\varepsilon = T_{00} = \int_{+} \mathcal{D} \mathcal{K}(\rho) n(\rho_0) \varrho(\rho)
$$

•
$$
\int_{+} = \int_{0}^{\infty} \frac{dp_0}{2\pi} \int \frac{d^3 \mathbf{p}}{(2\pi)^3}, \ \ \mathcal{D} \mathcal{K}(p) = 2p_0^2 \frac{\partial \mathcal{K}}{\partial p^2} - \mathcal{K}
$$

- \circ $\rho(p)$ spectral function, $n(p_0)$ Bose-Einstein distribution
- $\bullet \ \rho \Rightarrow \mathcal{K} \Rightarrow \epsilon$ functional of the spectral function!
- nonlinear function of $\rho \Rightarrow$ as we expected in the quantum entanglement case
- rescaling invariant: $\rho \rightarrow Z\rho$, $K \rightarrow \mathcal{K}/Z$
	- \Rightarrow $\rho \mathcal{D} \mathcal{K}$ is invariant
	- \Rightarrow only the energy levels count, not the normalization!

KID KAP KE KE KE ARA

Number of DoF (cf. Williams-Weizsacker formula) $N_{dof} = \int_{0}^{\infty}$ 0 dp_0 2π 1 $\frac{1}{p_0}\mathcal{D}(p)\varrho(p)$

- not direct physical meaning, but in case of discrete energy levels gives correct result (see later)
- nonlinear in ρ , rescaling invariant, like ε .

K ロ ト K 御 ト K 差 ト

[Introduction](#page-2-0) [Field theory solution](#page-19-0) [Results](#page-27-0) [Conclusion](#page-48-0)

K ロ ト K 何 ト K ヨ ト

 Ω

Outlines

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- **•** [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**

3 [Results](#page-27-0)

- [Single Dirac-delta](#page-28-0)
- **•** [Single Lorentzian](#page-33-0)
- **[Two Dirac-deltas](#page-38-0)**
- **[Two Lorentzians](#page-41-0)**
- **[Conclusion](#page-48-0)**

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**

3 [Results](#page-27-0)

• [Single Dirac-delta](#page-28-0)

- [Single Lorentzian](#page-33-0)
- **[Two Dirac-deltas](#page-38-0)**
- **[Two Lorentzians](#page-41-0)**

[Conclusion](#page-48-0)

→ 伊 ▶ →

つくい

This is the standard free particle case:

 $\varrho(\rho_0>0)=2\pi\delta(\rho^2-m^2) \quad \Rightarrow \quad {\cal L}={1\over 2}$ $rac{1}{2}$ Φ $\left(-\partial^2 - m^2\right)$ Φ

• number of DoF: $N_{dof} = 1 - OK$.

• energy density:
$$
\varepsilon = \frac{1}{2\pi^2} \int_{m}^{\infty} dp_0 n(p_0) p_0^2 \sqrt{p_0^2 - m^2}
$$

– the standard formula.

 \Rightarrow for one Dirac-delta the usual formulae are reproduced

KID KAP KE KE KE ARA

[Introduction](#page-2-0) [Field theory solution](#page-19-0) [Results](#page-27-0) [Conclusion](#page-48-0)

K ロ メ イ団 メ ス ミ メ ス ミ メ

唐

 299

Single Dirac-delta

Zimányi 2010 Winter School, KFKI, 30 November 2010.

KOX KARY KEY

 \rightarrow \equiv \rightarrow

 299

G.

Zimányi 2010 Winter School, KFKI, 30 November 2010.

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**

3 [Results](#page-27-0)

• [Single Dirac-delta](#page-28-0)

• [Single Lorentzian](#page-33-0)

- **[Two Dirac-deltas](#page-38-0)**
- **[Two Lorentzians](#page-41-0)**

[Conclusion](#page-48-0)

K ロ ⊁ K 伊 ⊁ K

つへへ

Breit-Wigner spectral function:

$$
\varrho(p) = \frac{4p\Gamma}{(p^2 - m^2)^2 + 4p^2\Gamma^2}
$$

• number of DoF analytically computable: $N_{dof} = 1!$

 \Rightarrow irrespective of the lifetime a single particle is 1DoF!

• BUT: it does not mean that *n* Lorentzians are *n* DoF, because of nonlinearity!

K ロ ト イ 伊 ト イ ヨ

 OQ

[Field theory solution](#page-19-0) **Field theory solution [Conclusion](#page-48-0) [Results](#page-27-0)** Conclusion **Conclusion**

メロメ メ都 メメ 老 メメ 老 メー

唐

 299

Single Lorentzian

Zimányi 2010 Winter School, KFKI, 30 November 2010.

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

 299

G.

Zimányi 2010 Winter School, KFKI, 30 November 2010.

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**

3 [Results](#page-27-0)

- [Single Dirac-delta](#page-28-0)
- [Single Lorentzian](#page-33-0)

• [Two Dirac-deltas](#page-38-0)

• [Two Lorentzians](#page-41-0)

[Conclusion](#page-48-0)

Zimányi 2010 Winter School, KFKI, 30 November 2010.

K ロ ⊁ K 伊 ⊁ K

つくい

Two stable particles, with different normalization $(Z_1 + Z_2 = 1)$ $\rho(p) = Z_1 2\pi \delta(p^2 - m_1^2) + Z_2 2\pi \delta(p^2 - m_2^2)$

Computing
$$
N_{dof} = \begin{cases} 2 & \text{if } m_1 \neq m_2 \\ 1 & \text{if } m_1 = m_2 \end{cases}
$$

\nSimilarly:

\n
$$
\varepsilon = \begin{cases} \varepsilon(m_1) + \varepsilon(m_2) & \text{if } m_1 \neq m_2 \\ \varepsilon(m) & \text{if } m_1 = m_2 = m \end{cases}
$$

How can have it from an analytical formula?

K ロ X (個) X を X X を X を → 「 を → の Q Q

In formula
\n
$$
N = \int_{0}^{\infty} dp_0 \frac{Z_2(p^2 - m_1^2)^2 + Z_1(p^2 - m_2^2)^2}{(Z_2(p^2 - m_1^2) + Z_1(p^2 - m_2^2))^2} [Z_1 \delta(p^2 - m_1^2) + Z_2 \delta(p^2 - m_2^2)].
$$

What is the difference between $m_2 = m_1$ and $m_2 \rightarrow m_1$? \Rightarrow $p^2 \rightarrow m_1^2$ and $m_2 \rightarrow m_1$ are not interchangable! $X = \frac{Z_2(\rho^2 - m_1^2)^2 + Z_1(\rho^2 - m_2^2)^2}{(Z(\rho^2 - m_1^2))^2 + Z(\rho^2 - m_2^2)^2}$ $\frac{Z_2(p^2 - m_1^2)^2 + Z_1(p^2 - m_2^2)^2}{(Z_2(p^2 - m_1^2) + Z_1(p^2 - m_2^2))^2}$ \Rightarrow $\begin{cases} \lim_{m_2 \to m_1} \lim_{p^2 \to m_1^2} X = \frac{1}{Z_1} \\ \lim_{p^2 \to m_1^2} \lim_{m_2 \to m_1} X = 1 \end{cases}$

 \Rightarrow this is the analytical appearance of Gibbs paradox! non-linearity of $N[\varrho]$ is important

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

[Introduction](#page-2-0)

- **•** [Equation of State in QCD](#page-3-0)
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**

3 [Results](#page-27-0)

- [Single Dirac-delta](#page-28-0)
- [Single Lorentzian](#page-33-0)
- **[Two Dirac-deltas](#page-38-0)**
- **[Two Lorentzians](#page-41-0)**

[Conclusion](#page-48-0)

K ロ ⊁ K 伊 ⊁ K

つへへ

From the lesson of two Dirac-deltas we expect for finite width:

イロト イ部 トメ ミト メ ミト

 \equiv

 $2Q$

In fact, from direct calculation:

This is the smoothed version of Gibbs paradox

Lesson

indistinguishability of particles is a dynamical question!

Zimányi 2010 Winter School, KFKI, 30 November 2010.

 $4.11 \times$

 $\left\{ \left\vert \left\langle \left\vert \Phi\right\vert \right\rangle \right\vert \right\} \rightarrow\left\vert \left\vert \Phi\right\vert \right\vert$

 \Rightarrow ă $2Q$

What is the effect to the thermodynamics?

- a: 2 Dirac-delta ($Γ_1 = 0, Γ_2 = 0.5$)
- b: add $\Gamma_1 = 0$ and $\Gamma_2 = 0.5$ independently (no entanglement)
- c: $Γ_1 = 0, Γ_2 = 0.5$ but few states in between
- d: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ with higher state density in between

• e:
$$
\Gamma_1 = 0.5, \Gamma_2 = 0.5
$$

K ロ ト イ 伊 ト イ ヨ

 QQQ

What is the effect to the thermodynamics?

Zimányi 2010 Winter School, KFKI, 30 November 2010.

 4 ロ } 4 \overline{P} } 4 \overline{E} }

 $\rightarrow \equiv$

 $2Q$

What is the effect to the thermodynamics?

- **a**: 2 Dirac-delta ($\Gamma_1 = 0, \Gamma_2 = 0.5$)
- b: add $\Gamma_1 = 0$ and $\Gamma_2 = 0.5$ independently (no entanglement)
- c: $Γ_1 = 0$, $Γ_2 = 0.5$ but few states in between
- d: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ with higher state density in between

 QQQ

• e:
$$
\Gamma_1 = 0.5, \Gamma_2 = 0.5
$$

Most important region for entanglement: between the two peaks!

Temperature dependent parameters

In real plasma mass and width are T -dependent quantities:

$$
m^2 = m_0^2 + \# T^2
$$
, $\Gamma^2 = \Gamma_0^2 + \# T^2$,

the coefficients are $\mathcal{O}(1)$ numbers. Typical result:

 $0\frac{L}{0}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.5 1 1.5 2 2.5 3 5^4 T $\overline{\text{SR}}$ $Γ_{1.2}=0$ $m_{1,2}(T), \Gamma_{1,2}(T)$

- for small T : same curves
- for large $T:$ does not reach SB limit

Э×

 Ω

K ロ ト イ 伊 ト イ ヨ

œ

つくい

Outlines

[Introduction](#page-2-0)

- **[Equation of State in QCD](#page-3-0)**
- **•** [Gibbs paradox](#page-11-0)
- **•** [Interactions](#page-15-0)
- [Field theory solution](#page-19-0)
	- [Generalized quadratic theory](#page-20-0)
	- **[Energy momentum tensor](#page-23-0)**
- **[Results](#page-27-0)**
	- [Single Dirac-delta](#page-28-0)
	- [Single Lorentzian](#page-33-0)
	- **[Two Dirac-deltas](#page-38-0)**
	- **[Two Lorentzians](#page-41-0)**

→ 伊→

 Ω

The most important points that modify the stable bound state gas results:

- states with same quantum numbers can mix \Rightarrow they should be described by the same field
- entanglement of the states (or number of DoF) is a dynamical question
- with T-dependent mass and width no SB limit

Zimányi 2010 Winter School, KFKI, 30 November 2010.