Field theory solution

Results 00000000000000

ヘロト ヘアト ヘヨト

- (E) - (

Conclusion

Gibbs paradox and the Hadron Resonance Gas

Antal Jakovác

BME Technical University Budapest

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction

Results 000000000000000

(口) (同) (

Outlines

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians

Introduction

Results 00000000000000

(口) (同) (

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

Introduction	Field theory solution	Results 0000000000000	Conclusion
Equation of State in QCD			
Outlines			

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

• • • • •

Introduction	Field theory solution	Results	Conclusion
00000000000			
Equation of State in QCD			

EoS comes from $Z = e^{-\beta F} = \text{Tr } e^{-\beta H}$

- exact computation: MC simulations measurement; we have to understand the result!
- most naive approach: treat plasma as gas of free particles
 - high T: free quarks and gluons \Rightarrow SB limit
 - low T: hadronic degrees of freedom $\Rightarrow \varepsilon$ and p at low T.

(F. Karsch, K. Redlich, A. Tawfik, Eur.Phys.J. C29 (2003) 549-556.)

 \Rightarrow Seems to work surprisingly well!

EoS comes from $Z = e^{-\beta F} = \text{Tr } e^{-\beta H}$

- exact computation: MC simulations measurement; we have to understand the result!
- most naive approach: treat plasma as gas of free particles
 - high T: free quarks and gluons \Rightarrow SB limit
 - low T: hadronic degrees of freedom $\Rightarrow \varepsilon$ and p at low T.

 \Rightarrow Seems to work surprisingly well!

<ロ> (四) (四) (三) (三) (三)

Baryon number fluctuations: solid line: naive HRG dashed blue lines: hadron masses on lattice; mass cut = 1.8 GeV resp. 2.5 GeV.

Results

 $N_{i} = 6$ N,=8 1/(T)I 150 100 200 300 N = 12200 400 600 800 1000 T[MeV]

T [MeV]

240

220

Introduction

0.2

0.15

0.1

0.05

0

140 160 180 200

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg,

C. Ratti, K.K. Szabo, arXiv:1007.2580v2)

Trace anomaly $I = \varepsilon - 3p$; HRG is not too accurate

energy density: SB limit is not reached at $\approx 5T_c$.

• • • • • • • • • •

10

5

1000

€(T)/T*

N = 6

200

- 10 🗖

400

150 200 250

600

T[MeV]

800

Introduction	
000000000000000000000000000000000000000	

Results 000000000000000

(日)((同))((日))(日)(日)

Equation of State in QCD

Problems of HRG model

- Recent MC data: not all quantities can be reproduced well
- transport: infinite lifetime \Rightarrow ballistic regime
 - \Rightarrow transport coefficients are infinite!
- in energy denstity: too large contribution after $\approx 1 1.5 T_c!$
 - HRG degrees of freedom are not there at hight T? crossover!
 - more correct: HGR degrees of freedom are resonances with finite (and *T*-dependent) lifetime

 $\Rightarrow~$ a particle with too short lifetime cannot be part of the statistical ensamble

 \Rightarrow we have to consider the complete spectrum!

Introduction	
000000000000000000000000000000000000000	

Results 00000000000000

▶ < □ ▶ <</p>

Equation of State in QCD

Problems of HRG model

- Recent MC data: not all quantities can be reproduced well
- transport: infinite lifetime \Rightarrow ballistic regime
 - \Rightarrow transport coefficients are infinite!
- in energy denstity: too large contribution after $\approx 1 1.5 T_c!$
 - HRG degrees of freedom are not there at hight *T*? crossover!
 - more correct: HGR degrees of freedom are resonances with finite (and *T*-dependent) lifetime

 $\Rightarrow~$ a particle with too short lifetime cannot be part of the statistical ensamble

 \Rightarrow we have to consider the complete spectrum!

conceptional problem

statistical physics cannot treat bound state models well! cf. H-atom problem

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction 000000000000	Field theory solution	Results 0000000000000	Conclusion
Equation of State in QCD			
H-atom problem			

HRG describes bound states of quarks ~ H-atom problem of QCD But already the H-atom problem is ill-defined in statistical physics! Coulomb problem: $E_n = -E_0/n^2$ is the energy level of *n*th energy level, degeneracy is n^2 :

$$Z=\sum_n n^2 e^{-\beta E_n} > \sum_n n^2 \to \infty.$$

Cannot be resolved using a regularization. Eg. take into account states with n < N, then the energy expectation value $\sum_{n=1}^{N} p^2 E_n e^{-\beta E_n} = N e^{\beta E_n} e^{-\beta E_n}$

$$0 < -\langle E \rangle = -\frac{\sum_{n}^{N} n^{2} E_{n} e^{-\beta E_{n}}}{\sum_{n}^{N} n^{2} e^{-\beta E_{n}}} < \frac{N e^{\beta E_{0}}}{N^{3}} \xrightarrow{N \to \infty} 0.$$

 \Rightarrow at all T, all H-atoms should be at highly excited state !?

Introduction	
000000000000000000000000000000000000000	

Results 00000000000000

(日)

Gibbs paradox

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

Introduction ○○○○○○●●●●●●	Field theory solution	Results 0000000000000	Conclusion
Gibbs paradox			

Not all energy levels are independent!

Gibbs' argumentation: take a classical ideal gas with N independent particles:

 $Z_N = V^N Z_1^N \Rightarrow F = -NT(\ln Z_1 + \ln V) \Rightarrow$ not extensive!

Solution: particles states that differ only in the value of momenta are indistinguishable:

$$Z_N = \frac{V^N Z_1^N}{N!} \Rightarrow F = -NT(\ln Z_1 + \ln \frac{V}{N}) \Rightarrow \text{ extensive!}$$

A degree of freedom (DoF): a bunch of indistinguishable states.

Appears in physical quantities: eg. SB limit $\varepsilon = N_{dof} \frac{\pi^2 T^2}{30}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 0000000000000	Field theory solution	Results 0000000000000	Conclusion
Gibbs paradox			

A new problem: what are then those states which are indistinguishable? what are the DoF?

- for sure different DoF: states with different internal quantum numbers (different charges)
- for sure same DoF: states which differ only in their momenta
- states with same charge, but different energy?? eg. in case of 1s and 2s bound states.

Gibbs takes them different – then states with mass m and m + dm are 2 DoF even in $dm \rightarrow 0^+$, but at dm = 0 is 1 DoF

 \Rightarrow nonanalytic behaviour in *dm*.

(本間) (本語) (本語) (二語)

Quantify: spectral function ~ density of states $\varrho(x) = \langle [A(x), A(0)] \rangle \rightarrow \varrho(\omega > 0) = \sum_{n} 2\pi \delta(\omega - E_n) |\langle n|A|0 \rangle|^2$ \Rightarrow energy levels appear directly

 \Rightarrow N_{dof} =number of Dirac-deltas in ϱ

normalization is irrelevant

•
$$\varrho \Rightarrow N_{dof}$$
: nonlinear relation

(日)

Introduction

Results 000000000000000

・ロト ・ 同ト ・ ヨト

Interactions

Outlines

Introduction

000

- Equation of State in QCD
- Gibbs paradox

Interactions

- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

Introduction	Field theory solution	Results 00000000000000	Conclusion
Interactions			
	1 I I I I I I I I I I I I I I I I I I I		

broadening of energy levels

In all real matter the energy levels are not sharp: broadening because of finite T, finite lifetime, or zero mass excitations. In finite volume: lot of energy levels: in ρ lot of Dirac-deltas

BUT: 1s vs. 2s in H-atom: particle content is the same, only the electromagnetic field is in different state, which is a photon coherent multiparticle state.

Introduction
000000000000000000000000000000000000000

Results 000000000000000

イロト イヨト イヨト

Conclusion

Interactions

overlapping states

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction
000000000000000000000000000000000000000

Results 000000000000000

Interactions

overlapping states

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction

Results 000000000000000

(口) (同) (

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions

2 Field theory solution

- Generalized quadratic theory
- Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

Introduction 000000000000	Field theory solution	Results 0000000000000	Conclusion
Generalized quadratic theory			
Outlines			

- Equation of State in QCD
- Gibbs paradox
- Interactions

2 Field theory solution

• Generalized quadratic theory

- Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

• • • • •

Generalized quadratic theory			
	000000		
Introduction	Field theory solution	Results	Conclusion

Our goal: contruct the statistical theory of finite lifetime resonances

The drawback of QM statistical treatment: fix the DoF beforehand, and order different wave functions to different DoF. But states with the same quantum numbers can interfere, mix with each other \Rightarrow we should treat them with the same wave function

Construct a quadratic field theory which is able to reproduce the observable spectral functions with a single field.

1

00000000000000000000000000000000000000	Field theory solution	Results 00000000000000	Conclusion
Generalized quadratic theory			
Take a single	e bosonic degree of freedo	om with the Lagrangiar	n

 $\mathcal{L} = \frac{1}{2} \Phi(x) \mathcal{K}(i\partial) \Phi(x).$

The corresponding retarded propagator

$$G_R(p) = rac{1}{\mathcal{K}(p_0 + i\varepsilon, \mathbf{p})}$$

Spectral function:

$$\varrho(p) = -2 \operatorname{Im} G_R(p) \quad \Leftrightarrow \quad G_R(p) = \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, \mathbf{p})}{p_0 - \omega + i\varepsilon}.$$

 $\mathcal{K} \Leftrightarrow \varrho$ relation

- nonlocal in time \Rightarrow no canonical formalism, no imaginary time formalism!
- causal: a theory is causal if *ρ*(*x*) = 0 for space-like 4-vectors.
 Since here we reproduce a given causal spectral function
 ⇒ gives a causal theory

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - のへの

Introduction	Field theory solution	Results	Conclusion
000000000000	○○○●○○○	0000000000000	
Energy momentum tensor			

Outlines

- Equation of State in QCD
- Gibbs paradox
- Interactions

2 Field theory solution

- Generalized quadratic theory
- Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians
- 4 Conclusion

- ▲ @ → - ▲ Ξ

Introduction 000000000000	Field theory solution	Results 0000000000000	Conclusion
Energy momentum tensor			

This system is spacetime translation invariant ⇒ ∃
 Noether currents (energy momentum tensor)

 $\hat{T}_{\mu\nu}(k) = \frac{1}{2} \int \frac{d^4p}{(2\pi)^4} \Phi(k-p) \mathcal{D}_{\mu\nu}(p) \Phi(p), \qquad D_{\mu\nu}(p) = p_{\mu} \frac{\partial \mathcal{K}}{\partial p^{\nu}} - g_{\mu\nu} \mathcal{K}$ In case of rel. invariance $\hat{T}_{\mu\nu}$ is symmetric.

- expectation value: $\langle \Phi(k-p)\Phi(p)\rangle = (2\pi)^4 \delta(k) iG_{<}(p)$ $\Rightarrow \langle \hat{T}_{\mu\nu}(x) \rangle = T_{\mu\nu}$ position independent.
- KMS relation: $\int d^3 \mathbf{x} \hat{T}_{00} = \hat{H}$ conserved charge \equiv generator of time translations $\Rightarrow e^{-\beta \hat{H}}$ time translation by $-i\beta$ \Rightarrow KMS relation is still valid.
- renormalization: subtract T = 0 value
 now: assume spectral function is temperature independent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Field theory solution	Results	Conclusion
000000000000	○○○○○●○	0000000000000	
Energy momentum tensor			

Finally

$$\varepsilon = T_{00} = \int_{+} \mathcal{DK}(p) n(p_0) \varrho(p)$$

- $\int_{+} = \int_{0}^{\infty} \frac{dp_0}{2\pi} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \,$, $\mathcal{DK}(\mathbf{p}) = 2p_0^2 \frac{\partial \mathcal{K}}{\partial \mathbf{p}^2} \mathcal{K}$
- $\varrho(p)$ spectral function, $n(p_0)$ Bose-Einstein distribution
- $\varrho \Rightarrow \mathcal{K} \Rightarrow \varepsilon$ functional of the spectral function!
- nonlinear function of $\rho \Rightarrow$ as we expected in the quantum entanglement case
- rescaling invariant: $\varrho \to Z \varrho$, $\mathcal{K} \to \mathcal{K}/Z$
 - $\Rightarrow \ \varrho \mathcal{DK}$ is invariant
 - \Rightarrow only the energy levels count, not the normalization!

◆□ → ◆□ → ◆三 → ◆三 → ● ● ●

Introduction	Field theory solution	Results	Conclusion
000000000000	000000	0000000000000	
Energy momentum tensor			

Number of DoF (cf. Williams-Weizsacker formula) $N_{dof} = \int_{0}^{\infty} \frac{dp_0}{2\pi} \frac{1}{p_0} \mathcal{D}(p) \varrho(p)$

- not direct physical meaning, but in case of discrete energy levels gives correct result (see later)
- nonlinear in ρ , rescaling invariant, like ε .

・ロン ・日ン・・日ン

Field theory solution

Results

(日)

Conclusion

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor

3 Results

- Single Dirac-delta
- Single Lorentzian
- Two Dirac-deltas
- Two Lorentzians
- 4 Conclusion

Introduction 000000000000	Field theory solution	Results ●0000000000000	Conclusion
Single Dirac-delta			
Outlines			

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor

3 Results

Single Dirac-delta

- Single Lorentzian
- Two Dirac-deltas
- Two Lorentzians

4 Conclusion

- ▲ @ → - ▲ Ξ

Introduction 000000000000	Field theory solution	Results ○●○○○○○○○○○○	Conclusion
Single Dirac-delta			

This is the standard free particle case:

 $arrho(p_0>0)=2\pi\delta(p^2-m^2)$ \Rightarrow $\mathcal{L}=rac{1}{2}\Phi(-\partial^2-m^2)\Phi$

• number of DoF: $N_{dof} = 1 - OK$.

• energy density:
$$\varepsilon = \frac{1}{2\pi^2} \int_m^\infty dp_0 n(p_0) p_0^2 \sqrt{p_0^2 - m^2}$$

the standard formula.

 \Rightarrow for one Dirac-delta the usual formulae are reproduced

◆□> ◆□> ◆三> ◆三> ●三 のへで

Field theory solution

イロト イポト イヨト イヨト

Conclusion

Single Dirac-delta

00	0000000000000	0000000	000000000000000000000000000000000000000
Si	ngle Dirac-delta		
	Spectral fun 0.045 0.04 0.035 0.03	Energy density	
	0.025 0.02 0.015 0.01 0.005 0 0	0.3 SB limit 0.25 0.2 0.2 0.5 0.15 0.5 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	
		0 0.5 1 1.5 2 T	2.3 3

D.

Zimányi 2010 Winter School, KFKI, 30 November 2010.

onclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Field theory solution

Results ○○○●○○○○○○○○○

・ロト ・ 同ト ・ ヨト

Conclusion

Single Lorentzian

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor

3 Results

• Single Dirac-delta

Single Lorentzian

- Two Dirac-deltas
- Two Lorentzians
- 4 Conclusion

Introduction 000000000000	Field theory solution	Results	Conclusion
Single Lorentzian			

Breit-Wigner spectral function:

$$\underline{\varrho}(p) = \frac{4p\Gamma}{(p^2 - m^2)^2 + 4p^2\Gamma^2}$$

• number of DoF analytically computable: $N_{dof} = 1!$

 $\Rightarrow \quad \text{irrespective of the lifetime a single particle is 1DoF!}$

• BUT: it does not mean that *n* Lorentzians are *n* DoF, because of nonlinearity!

▲ @ → < ■ →</p>

Field theory solution

Results ○○○○○○○○○○○○○

・ロト ・聞 ト ・ ヨト ・ ヨト・

Conclusion

Single Lorentzian

Introduction 00000000000000	Field theory solution	Results ○○○ ○ ●○○○○○○○○	Concl
Single Lorentzian			
Spectral	function Energy density 0.35 0.3 0.25 0.25 0.15 0.5 0.15 0.05 0.05 0.05 0.05	T=0 T=0.2 m=1 5 2 2.5 3	

Zimányi 2010 Winter School, KFKI, 30 November 2010.

nclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction	
000000000000000000	

Results ○○○○○○●○○○○○○

・ロト ・ 同ト ・ ヨト

Conclusion

Two Dirac-deltas

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor

3 Results

- Single Dirac-delta
- Single Lorentzian
- Two Dirac-deltas
- Two Lorentzians
- 4 Conclusion

Introduction 000000000000	Field theory solution	Results ○○○○○○○○○○○○○	Conclusion
Two Dirac-deltas			

Two stable particles, with different normalization $(Z_1 + Z_2 = 1)$ $\varrho(p) = Z_1 2\pi \delta(p^2 - m_1^2) + Z_2 2\pi \delta(p^2 - m_2^2)$

Computing
$$N_{dof} = \begin{cases} 2 & \text{if } m_1 \neq m_2 \\ 1 & \text{if } m_1 = m_2 \end{cases}$$

Similarly:
 $\varepsilon = \begin{cases} \varepsilon(m_1) + \varepsilon(m_2) & \text{if } m_1 \neq m_2 \\ \varepsilon(m) & \text{if } m_1 = m_2 = m \end{cases}$

How can have it from an analytical formula?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction 000000000000	Field theory solution	Results ○○○○○○○○○○○○○○	Conclusion
Two Dirac-deltas			

In formula

$$N = \int_{0}^{\infty} dp_0 \frac{Z_2(p^2 - m_1^2)^2 + Z_1(p^2 - m_2^2)^2}{(Z_2(p^2 - m_1^2) + Z_1(p^2 - m_2^2))^2} \left[Z_1 \delta(p^2 - m_1^2) + Z_2 \delta(p^2 - m_2^2) \right].$$

What is the difference between $m_2 = m_1$ and $m_2 \rightarrow m_1$? $\Rightarrow p^2 \rightarrow m_1^2$ and $m_2 \rightarrow m_1$ are not interchangable!

$$X = \frac{Z_2(p^2 - m_1^2)^2 + Z_1(p^2 - m_2^2)^2}{(Z_2(p^2 - m_1^2) + Z_1(p^2 - m_2^2))^2} \quad \Rightarrow \quad \begin{cases} \lim_{m_2 \to m_1} \lim_{p_2 \to m_1^2} X = \frac{1}{Z_1} \\ \lim_{p_2 \to m_1^2} \lim_{m_2 \to m_1} X = 1 \end{cases}$$

 \Rightarrow this is the analytical appearance of Gibbs paradox! non-linearity of $N[\varrho]$ is important

◆□> ◆□> ◆三> ◆三> ●三 のへで

Field theory solution

Results ○○○○○○○○●○○○○

イロト イヨト イヨト

∃⇒

Two Lorentzians

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor

3 Results

- Single Dirac-delta
- Single Lorentzian
- Two Dirac-deltas
- Two Lorentzians

4 Conclusion

Zimányi 2010 Winter School, KFKI, 30 November 2010.

٩

Zimányi 2010 Winter School, KFKI, 30 November 2010.

イロン 不同と 不同と 不同と

Introduction 000000000000	Field theory solution	Results ○○○○○○○○○●○○	Conclusion
Two Lorentzians			

In fact, from direct calculation:

This is the smoothed version of Gibbs paradox

Lesson

indistinguishability of particles is a dynamical question!

Zimányi 2010 Winter School, KFKI, 30 November 2010.

Introduction 000000000000	Field theory solution	Results ○○○○○○○○○○○○	Conclusion
Two Lorentzians			
thermodynami	cs		

What is the effect to the thermodynamics?

- a: 2 Dirac-delta ($\Gamma_1 = 0, \Gamma_2 = 0.5$)
- b: add $\Gamma_1 = 0$ and $\Gamma_2 = 0.5$ independently (no entanglement)
- c: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ but few states in between
- d: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ with higher state density in between

ヘロト ヘアト ヘヨト

$$\bullet \ e: \ \Gamma_1=0.5, \ \Gamma_2=0.5$$

What is the effect to the thermodynamics?

Zimányi 2010 Winter School, KFKI, 30 November 2010.

• • • • • • • • • • •

Introduction 000000000000	Field theory solution	Results ○○○○○○○○○○○○	Conclusion
Two Lorentzians			
thermodynam	nics		

What is the effect to the thermodynamics?

- a: 2 Dirac-delta ($\Gamma_1 = 0, \Gamma_2 = 0.5$)
- b: add $\Gamma_1 = 0$ and $\Gamma_2 = 0.5$ independently (no entanglement)
- c: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ but few states in between
- d: $\Gamma_1 = 0$, $\Gamma_2 = 0.5$ with higher state density in between

イロト イヨト イヨト

• e:
$$\Gamma_1 = 0.5, \ \Gamma_2 = 0.5$$

Most important region for entanglement: between the two peaks!

Field theory solution

Results ○○○○○○○○○○○○

Two Lorentzians

Temperature dependent parameters

In real plasma mass and width are T-dependent quantities:

$$m^2 = m_0^2 + \#T^2$$
, $\Gamma^2 = \Gamma_0^2 + \#T^2$

the coefficients are $\mathcal{O}(1)$ numbers.

Typical result:

- for small T: same curves
- for large *T*: does not reach SB limit

• • • • •

Introduction

Results 00000000000000

(日)

Outlines

Introduction

- Equation of State in QCD
- Gibbs paradox
- Interactions
- 2 Field theory solution
 - Generalized quadratic theory
 - Energy momentum tensor
- 3 Results
 - Single Dirac-delta
 - Single Lorentzian
 - Two Dirac-deltas
 - Two Lorentzians

Zimányi 2010 Winter School, KFKI, 30 November 2010.

The most important points that modify the stable bound state gas results:

- states with same quantum numbers can mix ⇒ they should be described by the same field
- entanglement of the states (or number of DoF) is a dynamical question
- with T-dependent mass and width no SB limit

