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Zimányi 2010 Winter School, KFKI, 30 November 2010.



Introduction Field theory solution Results Conclusion

Outlines

1 Introduction
Equation of State in QCD
Gibbs paradox
Interactions

2 Field theory solution
Generalized quadratic theory
Energy momentum tensor

3 Results
Single Dirac-delta
Single Lorentzian
Two Dirac-deltas
Two Lorentzians

4 Conclusion
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Equation of State in QCD

EoS comes from Z = e−βF = Tr e−βH

exact computation: MC simulations – measurement; we have
to understand the result!
most naive approach: treat plasma as gas of free particles

high T : free quarks and gluons ⇒ SB limit
low T : hadronic degrees of freedom ⇒ ε and p at low T .
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⇒ Seems to work surprisingly well!

Lesson

Strong interaction is mostly incorporated in the spectrum!

remaining interactions are weak
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Equation of State in QCD

Recent results
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Baryon number fluctuations:
solid line: naive HRG
dashed blue lines: hadron masses on lattice;
mass cut = 1.8 GeV resp. 2.5 GeV.

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg,

C. Ratti, K.K. Szabo, arXiv:1007.2580v2)

Trace anomaly I = ε − 3p; HRG is not
too accurate
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Equation of State in QCD

Recent results
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C. Ratti, K.K. Szabo, arXiv:1007.2580v2)

energy density: SB limit is not reached
at ≈ 5Tc .
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Equation of State in QCD

Problems of HRG model

Recent MC data: not all quantities can be reproduced well

transport: infinite lifetime ⇒ ballistic regime
⇒ transport coefficients are infinite!

in energy denstity: too large contribution after ≈ 1− 1.5Tc !

HRG degrees of freedom are not there at hight T? – crossover!
more correct: HGR degrees of freedom are resonances with
finite (and T -dependent) lifetime
⇒ a particle with too short lifetime cannot be part of the

statistical ensamble

⇒ we have to consider the complete spectrum!

conceptional problem

statistical physics cannot treat bound state models well!
cf. H-atom problem
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Equation of State in QCD

H-atom problem

HRG describes bound states of quarks ∼ H-atom problem of QCD
But already the H-atom problem is ill-defined in statistical physics!
Coulomb problem: En = −E0/n2 is the energy level of nth energy
level, degeneracy is n2:

Z =
∑
n

n2e−βEn >
∑
n

n2 →∞.

Cannot be resolved using a regularization. Eg. take into account
states with n < N, then the energy expectation value

0 < −〈E 〉 = −
∑N

n n2Ene
−βEn∑N

n n2e−βEn
<

NeβE0

N3

N→∞−→ 0.

⇒ at all T , all H-atoms should be at highly excited state !?
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Zimányi 2010 Winter School, KFKI, 30 November 2010.



Introduction Field theory solution Results Conclusion

Gibbs paradox

Not all energy levels are independent!

Gibbs’ argumentation: take a classical ideal gas with N
independent particles:

ZN = V NZN
1 ⇒ F = −NT (lnZ1 + lnV ) ⇒ not extensive!

Solution: particles states that differ only in the value of momenta
are indistinguishable:

ZN =
V NZN

1

N! ⇒ F = −NT (lnZ1 + ln V
N ) ⇒ extensive!

A degree of freedom (DoF): a bunch of indistinguishable states.

Appears in physical quantities: eg. SB limit ε = Ndof
π2T 2

30 .
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Gibbs paradox

A new problem: what are then those states which are
indistinguishable? what are the DoF?

for sure different DoF: states with different internal quantum
numbers (different charges)

for sure same DoF: states which differ only in their momenta

states with same charge, but different energy??
eg. in case of 1s and 2s bound states.

Gibbs takes them different – then states with mass m and m + dm
are 2 DoF even in dm → 0+, but at dm = 0 is 1 DoF
⇒ nonanalytic behaviour in dm.

Zimányi 2010 Winter School, KFKI, 30 November 2010.



Introduction Field theory solution Results Conclusion

Gibbs paradox

Quantify: spectral function ∼ density of states
%(x) = 〈[A(x),A(0)]〉 → %(ω > 0) =

∑
n 2πδ(ω − En) |〈n|A|0〉|2

⇒ energy levels appear directly

k = 0:

m m+dm

ρ

E

1s 2s ⇒
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⇒ Ndof =number of Dirac-deltas in %

normalization is irrelevant

% ⇒ Ndof : nonlinear relation
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Interactions

broadening of energy levels

In all real matter the energy levels are not sharp: broadening
because of finite T , finite lifetime, or zero mass excitations.
In finite volume: lot of energy levels: in % lot of Dirac-deltas

ρρρρρρρρρρρρρ

∞ DoF??
⇓

NO: these are multiparticle states. . .
⇓

only 1 DoF

BUT: 1s vs. 2s in H-atom: particle content is the same, only the
electromagnetic field is in different state, which is a photon
coherent multiparticle state.
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Interactions

overlapping states

Large separation
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Generalized quadratic theory

Our goal: contruct the statistical theory of finite lifetime
resonances

The drawback of QM statistical treatment: fix the DoF
beforehand, and order different wave functions to different DoF.
But states with the same quantum numbers can interfere, mix with
each other ⇒ we should treat them with the same wave
function

⇓
Construct a quadratic field theory which is able to reproduce the
observable spectral functions with a single field.
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Generalized quadratic theory

Take a single bosonic degree of freedom with the Lagrangian

L =
1

2
Φ(x)K(i∂)Φ(x).

The corresponding retarded propagator

GR(p) =
1

K(p0 + iε,p)
Spectral function:

%(p) = −2 Im GR(p) ⇔ GR(p) =

∫
dω

2π

%(ω,p)

p0 − ω + iε
.

K ⇔ % relation

nonlocal in time ⇒ no canonical formalism, no imaginary
time formalism!

causal: a theory is causal if %(x) = 0 for space-like 4-vectors.
Since here we reproduce a given causal spectral function
⇒ gives a causal theory
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Energy momentum tensor

This system is spacetime translation invariant ⇒ ∃
Noether currents (energy momentum tensor)

T̂µν(k) =
1

2

∫
d4p

(2π)4
Φ(k − p)Dµν(p)Φ(p), Dµν(p) = pµ

∂K
∂pν

− gµνK

In case of rel. invariance T̂µν is symmetric.

expectation value: 〈Φ(k − p)Φ(p)〉 = (2π)4δ(k) iG<(p)

⇒
〈
T̂µν(x)

〉
= Tµν position independent.

KMS relation:
∫

d3xT̂00 = Ĥ conserved charge ≡ generator

of time translations ⇒ e−βĤ time translation by −iβ
⇒ KMS relation is still valid.

renormalization: subtract T = 0 value
now: assume spectral function is temperature independent.
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Energy momentum tensor

Finally

ε = T00 =

∫
+
DK(p)n(p0)%(p)

∫
+ =

∫∞
0

dp0
2π

∫ d3p
(2π)3

, DK(p) = 2p2
0

∂K
∂p2 −K

%(p) spectral function, n(p0) Bose-Einstein distribution

% ⇒ K ⇒ ε functional of the spectral function!

nonlinear function of % ⇒ as we expected in the quantum
entanglement case

rescaling invariant: % → Z%, K → K/Z
⇒ %DK is invariant
⇒ only the energy levels count, not the normalization!
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Energy momentum tensor

Number of DoF (cf. Williams-Weizsacker formula)

Ndof =

∞∫
0

dp0

2π

1

p0
D(p)%(p)

not direct physical meaning, but in case of discrete energy
levels gives correct result (see later)

nonlinear in %, rescaling invariant, like ε.
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Single Dirac-delta

This is the standard free particle case:

%(p0 > 0) = 2πδ(p2 −m2) ⇒ L =
1

2
Φ(−∂2 −m2)Φ

number of DoF: Ndof = 1 – OK.

energy density: ε =
1

2π2

∞∫
m

dp0 n(p0) p2
0

√
p2

0 −m2

– the standard formula.

⇒ for one Dirac-delta the usual formulae are reproduced
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Single Dirac-delta

Spectral function
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Single Lorentzian

Breit-Wigner spectral function:

%(p) =
4pΓ

(p2 −m2)2 + 4p2Γ2

number of DoF analytically computable: Ndof = 1!
⇒ irrespective of the lifetime a single particle is 1DoF!

BUT: it does not mean that n Lorentzians are n DoF, because
of nonlinearity!
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Single Lorentzian

Spectral function
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Single Lorentzian

Spectral function
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Single Lorentzian

Spectral function
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Two Dirac-deltas

Two stable particles, with different normalization (Z1 + Z2 = 1)
%(p) = Z12πδ(p2 −m2

1) + Z22πδ(p2 −m2
2)

Computing Ndof =

{
2 if m1 6= m2

1 if m1 = m2

Similarly:

ε =

{
ε(m1) + ε(m2) if m1 6= m2

ε(m) if m1 = m2 = m

How can have it from an analytical formula?
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Two Dirac-deltas

In formula

N =

∞∫
0

dp0
Z2(p

2 −m2
1)

2 + Z1(p
2 −m2

2)
2

(Z2(p2 −m2
1) + Z1(p2 −m2

2))
2

[
Z1δ(p

2 −m2
1) + Z2δ(p

2 −m2
2)

]
.

What is the difference between m2 = m1 and m2 → m1?
⇒ p2 → m2

1 and m2 → m1 are not interchangable!

X =
Z2(p

2 −m2
1)

2 + Z1(p
2 −m2

2)
2

(Z2(p2 −m2
1) + Z1(p2 −m2

2))
2

⇒
{

limm2→m1 limp2→m2
1
X = 1

Z1

limp2→m2
1
limm2→m1 X = 1

⇒ this is the analytical appearance of Gibbs paradox!
non-linearity of N[%] is important
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Two Lorentzians

From the lesson of two Dirac-deltas we expect for finite width:
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Two Lorentzians

In fact, from direct calculation:

 0

 0.5
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N
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f
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This is the smoothed version of
Gibbs paradox

Lesson

indistinguishability of particles is a dynamical question!
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Two Lorentzians

thermodynamics

What is the effect to the thermodynamics?
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Two Lorentzians

thermodynamics

What is the effect to the thermodynamics?
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Two Lorentzians

Temperature dependent parameters

In real plasma mass and width are T -dependent quantities:
m2 = m2

0 + #T 2, Γ2 = Γ2
0 + #T 2,

the coefficients are O(1) numbers.
Typical result:
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The most important points that modify the stable bound state gas
results:

states with same quantum numbers can mix ⇒ they
should be described by the same field

entanglement of the states (or number of DoF) is a dynamical
question

with T -dependent mass and width no SB limit
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