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Equation of State in QCD

EoS comes from Z = e PF = Tre—FAH

@ exact computation: MC simulations — measurement; we have
to understand the result!
@ most naive approach: treat plasma as gas of free particles
o high T: free quarks and gluons =SB limit
o low T: hadronic degrees of freedom = ¢ and p atlow T.
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(F. Karsch, K. Redlich, A. Tawfik, Eur.Phys.J. C29 (2003) 549-556.)

= Seems to work surprisingly well!
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EoS comes from Z = e PF = Tre—FAH

@ exact computation: MC simulations — measurement; we have
to understand the result!
@ most naive approach: treat plasma as gas of free particles
o high T: free quarks and gluons =SB limit
o low T: hadronic degrees of freedom = ¢ and p atlow T.

(e-3P)T*

e Strong interaction is mostly incorporated in the spectrum!

e remaining interactions are weak

(F. Karsch, K. Redlich, A. Tawfik, Eur.Phys.J. C29 (2003) 549-556.)
= Seems to work surprisingly well!
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Equation of State in QCD

Recent results
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Equation of State in QCD

Recent results
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speed of sound minimum is HRG value,
02 for larger T HRG fails.
0.15
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Equation of State in QCD

Problems of HRG model

@ Recent MC data: not all quantities can be reproduced well

o transport: infinite lifetime = ballistic regime
= transport coefficients are infinite!
@ in energy denstity: too large contribution after =~ 1 — 1.5T.!
o HRG degrees of freedom are not there at hight T? — crossover!
e more correct: HGR degrees of freedom are resonances with
finite (and T-dependent) lifetime

= a particle with too short lifetime cannot be part of the
statistical ensamble

= we have to consider the complete spectrum!
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Equation of State in QCD

Problems of HRG model

@ Recent MC data: not all quantities can be reproduced well

o transport: infinite lifetime = ballistic regime
= transport coefficients are infinite!
@ in energy denstity: too large contribution after =~ 1 — 1.5T.!
o HRG degrees of freedom are not there at hight T? — crossover!
e more correct: HGR degrees of freedom are resonances with
finite (and T-dependent) lifetime
= a particle with too short lifetime cannot be part of the
statistical ensamble

= we have to consider the complete spectrum!

conceptional problem

statistical physics cannot treat bound state models well!
cf. H-atom problem
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Equation of State in QCD

H-atom problem

HRG describes bound states of quarks ~ H-atom problem of QCD
But already the H-atom problem is ill-defined in statistical physics!
Coulomb problem: E, = —Eg/n? is the energy level of nth energy
level, degeneracy is n?:

Z:anefﬁE" > an — 0.
n n

Cannot be resolved using a regularization. Eg. take into account
states with n < N, then the energy expectation value
N 2 —BE, BE
n“E,e NePro n_,
0<—<E>:—Z”N < <— =0
SN p2e—BE, N

= atall T, all H-atoms should be at highly excited state !?
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Gibbs paradox

Not all energy levels are independent!

Gibbs’ argumentation: take a classical ideal gas with N
independent particles:

Zy=VNzZN = F=-NT(InZ +InV) = not extensive!
Solution: particles states that differ only in the value of momenta
are indistinguishable:

7y = vz _ v ivel
N = —qi = F=-NT(InZ;+Ing) = extensive!

A degree of freedom (DoF): a bunch of indistinguishable states.

Appears in physical quantities: eg. SB limit ¢ = Ndof%.
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Gibbs paradox

A new problem: what are then those states which are
indistinguishable? what are the DoF?

o for sure different DoF: states with different internal quantum
numbers (different charges)

@ for sure same DoF: states which differ only in their momenta

@ states with same charge, but different energy??
eg. in case of 1s and 2s bound states.

Gibbs takes them different — then states with mass m and m + dm
are 2 DoF even in dm — 07, but at dm =0is 1 DoF
= nonanalytic behaviour in dm.
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Gibbs paradox

Quantify: spectral function ~ density of states
o(x) = {[A(x), A(Q)]) = ow > 0) =3, 2m6(w — E,) |(n|A|0)?
= energy levels appear directly

k = 0:

2s|

Not

m m+dm

= Ngor =number of Dirac-deltas in o

@ normalization is irrelevant

@ 0 = Ngor: nonlinear relation

15+

05 ¢

0 02 04 06 08 1
dm

Zimanyi 2010 Winter School, KFKI, 30 November 2010.



Introduction

Interactions

Outlines

0 Introduction

@ Interactions

Zimanyi 2010 Winter School, KFKI, 30 November 2010.



Introduction
oceo

Interactions

broadening of energy levels

In all real matter the energy levels are not sharp: broadening
because of finite T, finite lifetime, or zero mass excitations.
In finite volume: lot of energy levels: in o lot of Dirac-deltas

i oo DoF?7?

Il l}

a Il NO: these are multiparticle states. ..
I \[8
\ only 1 DoF

I
BUT: 1s vs. 2s in H-atom: particle content is the same, only the

electromagnetic field is in different state, which is a photon
coherent multiparticle state.

M
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Interactions

overlapping states

Large separation
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Interactions

overlapping states

Large separation

Overlapping peaks: entanglement
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Generalized quadratic theory

Our goal: contruct the statistical theory of finite lifetime
resonances

The drawback of QM statistical treatment: fix the DoF
beforehand, and order different wave functions to different DoF.
But states with the same quantum numbers can interfere, mix with
each other = we should treat them with the same wave
function

J
Construct a quadratic field theory which is able to reproduce the
observable spectral functions with a single field.
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Generalized quadratic theory

Take a single bosonic degree of freedom with the Lagrangian
1
L= §¢(x)IC(i8)d>(x).
The corresponding retarded propagator

CR(P) = Koo 1 ie.p)

Spectral function:

o(p) = —2Im Gr(p) & GR(p):/de

27 po —w+ ie
K < prelation

@ nonlocal in time = no canonical formalism, no imaginary
time formalism!

@ causal: a theory is causal if o(x) = 0 for space-like 4-vectors.
Since here we reproduce a given causal spectral function
= gives a causal theory
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Energy momentum tensor

A~

7_/“/(/() - ;/(Zﬂ_l));; ¢(k - p)D/LI/(p)q)(p)’ D/tl/(p) - p/t 8’C

Field theory solution
0®00

@ This system is spacetime translation invariant = 3

Noether currents (energy momentum tensor)

—— — gk
op¥ &

In case of rel. invariance T, is symmetric.

@ expectation value: (®(k — p)®(p)) = (27)*3(k) iG-(p)

= <?,W(X)> = T, position independent.

o KMS relation: [ d3xToo = H conserved charge = generator

of time translations = e " time translation by —if3
= KMS relation is still valid.

@ renormalization: subtract T = 0 value

now: assume spectral function is temperature independent.

Zimanyi 2010 Winter School, KFKI, 30 November 2010.



Energy momentum tensor

Field theory solution
feeX Yol

Finally
e= T = / DK(p)n(po)o(p)
+
_ [® _ 2 0K
o fr=1"9 «[271')3’ (P) =2pPg s — K
e o(p) spectral function, n(pg) Bose-Einstein distribution
@ o = K = ¢ functional of the spectral function!
@ nonlinear function of ¢ = as we expected in the quantum
entanglement case

@ rescaling invariant: ¢ — Zp, K — K/Z

= DK is invariant
= only the energy levels count, not the normalization!
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Energy momentum tensor

Number of DoF (cf. Williams-Weizsacker formula)
[ dpo 1
2= D(p)e(p)

N =
dof 21 po

@ not direct physical meaning, but in case of discrete energy

levels gives correct result (see later)

@ nonlinear in g, rescaling invariant, like €.
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Single Dirac-delta

This is the standard free particle case:
1
o(po >0) =276(p> —m?) = L= 5<|>(—a2 - m?)o

@ number of DoF: Ngor = 1 — OK.

oo

. 1
@ energy density: € = 57 dpo n(po) P31/ P§ — m?

m
— the standard formula.

= for one Dirac-delta the usual formulae are reproduced
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Single Dirac-delta

Spectral function
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Single Dirac-delta

0.045

0.04 -
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Single Dirac-delta

Spectral function
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Single Lorentzian
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Single Lorentzian

Breit-Wigner spectral function:
4pl
p? — m?)2 + 4pI?

o(p) = (

@ number of DoF analytically computable: Ngyor = 1!
= irrespective of the lifetime a single particle is 1DoF!

@ BUT: it does not mean that n Lorentzians are n DoF, because
of nonlinearity!

Zimanyi 2010 Winter School, KFKI, 30 November 2010.



Single Lorentzian

Results
ocoe

Spectral function
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Single Lorentzian

Spectral function

1r <

0 0.5

Energy density
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Single Lorentzian

Spectral function
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Two Dirac-deltas

Two stable particles, with different normalization (Z; + Z; = 1)
o(p) = Zi2m6(p* — m}) + Z:278(p* — m3)

. 2 if
Computing Ngor = { ) ;f zi i zi

Similarly:

. {E(ml) +e(ma)  if mp # mo
~e(m) ifm =my=m

How can have it from an analytical formula?
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Two Dirac-deltas

In formula

o0

_ Z2(P2 - m%)z + Zl(P2 - m§)2 2 2 2 2
V= [ O o+ = iy 2067 = )+ 20067 = ).

What is the difference between my = m; and my — my?
= p2 — m% and my — m;y are not interchangable!

X

. Z2(p2 _ m%)2 + Zl(p2 _ m§)2 { |immz_,m1 |imp2_>m§ X
(Z2(p? — m3) + Zu(p? — m3))? X

limpz 2 liMp, —my

= this is the analytical appearance of Gibbs paradox!
non-linearity of N[g] is important
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Two Lorentzians

From the lesson of two Dirac-deltas we expect for finite width:
0.6

0.5 ~
04 ‘

\ first p> — m? limit = 2 DoF

o 03

02 l

1
first m% — m%, later p2 — m?
¢ limit = 1 DoF
04
02 \
’ /// AN
o
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Two Lorentzians

In fact, from direct calculation:

N dof

15

05

m;=1
m,=2

0.1

0.2

03

0.4

0.5

Results
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This is the smoothed version of
Gibbs paradox

indistinguishability of particles is a dynamical question!
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Two Lorentzians

thermodynamics

What is the effect to the thermodynamics?
07

@ a: 2 Dirac-delta (I';y =0, = 0.5)

| @ b:addl; =0and I, =0.5
d independently (no entanglement)

06

||
oo

05 r
04 r

gt

@ c: [{ =0, =0.5 but few states
in between

@ d: I'; =0, N, =0.5 with higher
state density in between

3 e ;= 0.5, =05

03 r
02 r
01 -

0
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Two Lorentzians

thermodynamics

What is the effect to the thermodynamics?
07
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Two Lorentzians

thermodynamics

What is the effect to the thermodynamics?
07

@ a: 2 Dirac-delta (I';y =0, = 0.5)

| @ b:addl; =0and I, =0.5
d independently (no entanglement)

06

||
oo

05 r
04 r

gt

@ c: [{ =0, =0.5 but few states
in between

@ d: I'; =0, N, =0.5 with higher
state density in between

03 r
02 r
01 -

I ———
0 05 1 15 2 25 3 @el1=05T,=05

Most important region for entanglement: between the two peaks!
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Two Lorentzians

Temperature dependent parameters

In real plasma mass and width are T-dependent quantities:
m?* =mi+#T?, T2 =T3+#T?

the coefficients are O(1) numbers.

Typical result:

0.7

et

06 r
05
04
03 r
02 r
01 -

0

SB

M ,=0

M2 N0 ]

@ for small T: same curves

o for large T: does not reach SB
limit
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Conclusion

The most important points that modify the stable bound state gas
results:

@ states with same quantum numbers can mix = they
should be described by the same field

@ entanglement of the states (or number of DoF) is a dynamical
question

@ with T-dependent mass and width no SB limit

10 07
=1 ]
2 \ m17 06 SB
8 \ my=2 r1,=0
15\ 1 05
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5 04
a H 2 \ +
= 1 S ® 03
4 “ 1 : myo(M), Fi(M)
|| entanglement ol RS
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