

TauFV: opportunity for flavor physics @ SPS

Lesya Shchutska École Polytechnique Fédérale de Lausanne

TauFV: ultimate τ and charm factory

TauFV puts forward a concept of a high-precision fixed-target flavor experiment

Latest documented status: input to the EPPSU

• TauFV: a fixed-target experiment to search for flavour violation in tau decays

Key characteristics in this proposal:

- located 100 m upstream of the proposed BDF with a separate target
- operates synergistically with the main user:
 - takes 2% of the proton beam
- aims at collecting 4×10^{18} PoT in 5 years
- leads to $10^{16}~D$ and D_s mesons, 8×10^{13} taus from $D_s^-\to \tau^-\overline{\nu}_{\tau}$, 10^{19} kaons
 - $au o 3\mu$ physics case is used as a demonstrator
 - its acceptance is order or magnitude larger than proposed LHCb Upgrade II

Charged lepton flavor violation in tau decays

 $\tau \to 3\ell$ searches – the most stringent upper limits on charged lepton flavor violation

Belle II is the leader in projected sensitivity, expecting 3.6×10^{-10} with 50/ab

Belle@
$$e^+e^-$$
: $\mathcal{B}(\tau \to 3\mu) < 2.1 \times 10^{-8}$

- bkg-free search: tag on the other τ
- single-event sensitivity

$\tau \to 3\mu$: e⁺e⁻ vs hadron machines

LHCb@pp:
$$\mathcal{B}(\tau \to 3\mu) < 4.6 \times 10^{-8}$$

- irreducible $D_{(s)} \rightarrow 3\mu + X$ bkg
- search for a peak on top of bkg
- need higher signal yield for same sensitivity

$\tau \to 3\mu$: future prospects

Existing facilities:

- Belle II@ e^+e^- : 3.6×10⁻¹⁰
- HL-LHC: ATLAS, CMS, LHCb envision $\mathcal{O}(10^{-9})$ the only hadron machine

Proposed facilities:

- Super τ -charm facility (STCF), e^+e^- collider in China 1.4×10⁻⁹ per year, or 1.4×10⁻¹⁰ @ 10 years
- FCC-ee: $\mathcal{O}(10^{-10})$

arXiv:2203.14919

$au o 3\mu$: future prospects

	Observed Limits			Expected Limits		
$\tau^- \rightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)
$\mu^-\mu^+\mu^-$	Belle		2.1×10^{-8}	Belle II	50 ab^{-1}	3.6×10^{-10}
	BaBar	468 fb^{-1}	3.3×10^{-8}			
	LHCb	3 fb^{-1}	4.6×10^{-8}	LHCb		$\mathcal{O}(10^{-9})$
	CMS	33 fb^{-1}	8.0×10^{-8}	CMS	3 ab^{-1}	3.7×10^{-9}
	ATLAS	$20 \mathrm{fb^{-1}}$	3.8×10^{-7}	ATLAS	3 ab^{-1}	1.0×10^{-9}
				STCF		1.4×10^{-9}
203 14919				FCC-ee	150 ab^{-1}	$\mathcal{O}(10^{-10})$

$\tau \to 3\mu$: opportunity at the SPS

Assuming 2% of 4×10^{18} PoT in 5 years, get 8×10^{13} $D_s \to \tau \nu$ decays, more than

- $\sim 10^2 \times$ produced in LHCb in Runs 1&2

Assuming 10% total efficiency for $\tau \to 3\mu$ decays in TauFV, get for $\mathcal{B}(\tau \to 3\mu) = 10^{-10}$:

Experiment	Luminosity/PoT	Yield	UL (exp)
TauFV	4×10^{18}	800	$\mathcal{O}(10^{-10})$
Belle II	$50 \mathrm{ab^{-1}}$	1	3.6×10^{-10}
LHCb Upgrade I	$50 \mathrm{fb^{-1}}$	14	$\mathcal{O}(10^{-8})$
LHCb Upgrade II	300 fb^{-1}	84	$O(10^{-9})$

Get into the competition on a not so long timeline!

Challenges: trimuon processes

Dominant background in the latest LHCb search:

Other decays of D and D_s are likely to be a limiting factor to the final sensitivity.

Normalized to $D_s \to \eta(\mu\mu\gamma)\mu\nu$ ($\mathcal{B} \sim 10^{-5}$)

$(D \sim 10)$	
Decay channel	Relative abundance
D_s \rightarrow η(μμγ)μν	1
D_s \rightarrow $\phi(\mu\mu)\mu\nu$	0.87
D_s \rightarrow η'(μμγ)μν	0.13
D→η(μμγ)μν	0.13
D \rightarrow ω(μμ)μν	0.06
D→ρ(μμ)μν	0.05

Guy Wilkinson, CLFV'2019 7/21

Challenges: trimuon processes

Trimuons can be significantly/fully suppressed by setting vetos in the dimuon mass:

Flat phase space: 25% signal efficiency retained. Cons: $\tau \to 3\mu$ acceptance becomes model-dependent.

Other handles: ECAL

Need an excellent ECAL for:

- photon veto for η and η' modes
- photon tag to select $D_s^* \to D_s(\tau \nu) \gamma$

Can suppress all non- D_s backgrounds

Both energy resolution and timing in the ECAL are essential due to high pileup in the fixed-target environment

Guy Wilkinson, CLFV 2019

Challenges: combinatorial background

Includes the following sources:

- random matching of a dimuon vertex with a muon
- random matching of misID muons (e.g. decays in flight, punchtrough)

Can be suppressed with:

- high-quality vertex detector and low material budget at the τ production region
- good mass resolution allowing to veto known resonances
- timing information $\mathcal{O}(20\mathrm{ps})$ and longer spill duration

Preliminary PYTHIA studies show that this background can be under control.

Guy Wilkinson, CLFV'2019 10/21

Angular acceptance: $20 \to 260$ mrad (geometrical efficiency $\sim 40\%$ for $\tau \to 3\mu$)

Bonuses of the excellent ECAL

- $\tau \to 3\mu$ is the most challenging mode
- $\tau^- \to \mu^+ e^- e^-$ and $\tau^- \to e^+ \mu^- \mu^-$ almost background-free, higher sensitivity
- $\tau^- \to e^- e^+ e^+, \tau^- \to \mu^- e^+ e^-, \tau^- \to e^- \mu^+ \mu^-$ can also be searched for

Plus various flavour physics with neutrals in the final state: photons or pions

Wider physics programme: charm physics

- huge sample of charm (e.g. $\sim 5 \times 10^{15}~D^0$) produced, $\times 10^5$ more than at Belle II
- similar to LHCb Upgrade II, and complementary in terms of soft ECAL objects

Excellent performance expected in highly wanted measurements:

- direct CPV in charged modes exploit hadron ID from TORCH
- rare decays, e.g. $D^0 \to \mu\mu$
- indirect CPV studies

Soft ECAL based physics is very difficult at LHCb:

- CPV studies with neutrals, e.g. $D \to \pi \pi^0$
- ullet CPV studies with radiative penguins, e.g. $D o V \gamma$
- ullet rare decays with neutrals, e.g. $D o \gamma \gamma$ (10⁻⁸ in SM, just beyond Belle II reach)

Guy Wilkinson, CLFV'2019

Wider physics programme: strange physics

Expect to have 10^{19} kaons produced:

• can search for LFV kaon decays

$$K^+, K^0_S, K^0_L \to (\pi) \mu e$$

A potential to **to discover CPV in hyperon decay**:

- expected to be 10^{-5} in the SM [Lee & Yang, PR 108 (1957) 1645, Perotti et al. PRD 99 (2019) 056008]
- \bullet can be probed at STCF in $J/\psi \to$ hyperon antihyperon decays but might be beyond sensitivity
- possible mode in TauFV

$$\Xi^- \to \Lambda \pi^-$$

Can search for many rare or forbidden decays [H-B Li, Front. Phys, 12 (2017) 121301]

Possible location in ECN3

Target system and detector

Wire target:

- skims small part of the beam
- no multiple scattering
- allows precise secondary vertex reconstruction

LHCb-like detector:

- technologies being developed for Upgrade 1b (LS3) and Upgrade II (LS4)
- high radiation tolerance and timing capabilities are essential

VELO: vertex locator

- hybrid pixel sensors (similar to already installed LHCb Upgrade I)
- mechanically simpler as no need to open or close the detector, no RF foil or vacuum
- aim for ~ 50 ps timing resolution per hit or ~ 20 ps per track

TORCH: Timing of Internally Reflected Cherenkov light

- hadron PID with time-of-flight measurements over large area
- target 70 ps resolution per photon leading to 10-15 ps per track
- demonstrator module has achieved $\sim 80 \, \mathrm{ps}$
- very compact and intrinsically radiation hard

ECAL

- precise electron and photon measurement for decay tags and combinatorial bkg suppression
- R&D for LHCb: SPACAL design with GAGG crystal fibers and W(75%)/Cu(25%) absorber
- achieved energy resolution of $5-10\%/\sqrt{E[\text{GeV}]}$
- timing resolution 15 ps above 30 GeV

Radiation hardness

- prompt dose rates: 2% of 4×10^{13} p / 7.2s
- the highest dose rates can be found in the region of the target, calorimeter, and muon spectrometer, reaching a few times 10¹¹ µSv/h
- the facility should be designed such that interventions will be performed with remote handling systems

SPS Beam Dump Facility 20/21

Summary

TauFV

- offers a possibility to study an unprecedented sample of τ , charm and strange hadrons:
 - more detailed simulation studies are required to get projected sensitivities
- relies on technologies developed for LHCb Upgrade II and pushes them further
- complements HL-LHC and SPS programmes and competes with other facilities

